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Abstract Foreign exchange (FX) rate forecasting
is a challenging area of study. Various linear and
nonlinear methods have been used to forecast FX rates.
As the currency data are nonlinear and highly corre-
lated, forecasting through nonlinear dynamical systems
is becoming more relevant. The k-nearest neighbor
(k-NN) algorithm is one of the most commonly used
nonlinear pattern recognition and forecasting methods
that outperforms the available linear forecasting meth-
ods for the high frequency foreign exchange data. As
the k neighbors are selected according to a distance
function, the choice of distance plays a key role in the
k-NN procedure.
The time series forecasting method, Auto Regres-
sive Integrated Moving Average process (ARIMA) is
considered as one of the superior forecasting method
for time series data. In this work, we compare the
performances of Mahalanobis distance based k-NN fore-
casting procedure with the traditional ARIMA based
forecasting method. In addition, the forecasts were
transformed into a technical trading strategy to create
buy and sell signals. The two methods were evaluated
for their forecasting accuracy and trading performances.

Keywords Forex Trading, k-Nearest Neighbor,
Mahalanobis Distance, ARIMA, Multi-step Ahead
Time Series Forecasting

1 Introduction

The foreign exchange (FX) market is a non-stop
cash market where currencies of nations are traded.
Foreign currencies are constantly and simultaneously
bought and sold across local and global markets, and
traders’ investments increase or decrease in value based
upon currency movements. The investors goal in FX
trading is to profit from foreign currency movements. A
preliminary global study by the Bank for International
Settlements from the 2013 Triennial Central Bank
Survey of Foreign Exchange and OTC Derivatives
Markets Activity show that trading in foreign exchange

markets averaged 5.3 trillion dollars per day in April
2013. Thus, foreign exchange rates forecasting is one of
the challenging and important applications of financial
time series prediction.

Foreign exchange rate forecasting is a challenging task
due to the non linearity and the highly correlated na-
ture of the data [10, 25]. Nonlinear dynamical systems
are becoming more popular and relevant forecasting
techniques due to these data structure. Neighbor
Algorithms is one of the most popular such non-linear
pattern recognition algorithm, which dates back to an
unpublished report by Fix and Hodges in 1951, [6]. The
basic principle of k-nearest neighbor (k-NN) rule is to
investigate the past behavior of the currency data so
that it can fully capture the dependency of the future
exchange rates and that of the past. As a pattern
recognition algorithm, k-NN looks for the repetitions of
specific price patterns such as major trends, critical or
turning points.
k-nearest neighbor forecasting procedure is mainly

based on the similarity structure of the past and the
present. The recognized “nearest neighbors” are the
only data values used in the forecasting algorithm.
The term ’nearest’ is determined by a distance metric.
Thus, it is highly important to have a distance function
which captures the true nature of the data. Among
nearest neighbor methods, Mahalanobis distance proved
to be more efficient [19, 20]. In this paper, we will
compare Mahalanobis based nearest neighbor method
of forecasting to some of the popular time series based
methods.

In section 2, we will give some background material on k-
NN & distance measures, times series forecasting meth-
ods, and multi-step ahead forecasting of time series.
In section 3 we will briefly discuss some of our previously
obtained results of choosing embedding Dimension (m),
number of nearest neighbors (k) and Mahalanobis dis-
tance as the distance choice and then present the com-
parison results of proposed Mahalanobis distance based
k-NN and ARIMA forecasting models for single step
ahead and multi-step ahead forecasting. The discussion
and conclusions will be given in section 4 and 5.

1



2 Materials and Methods

2.1 k-Nearest Neighbor Algorithm and
the Choice of Distance

2.1.1 Background

k-nearest eighbor (k-NN) algorithm rank the data and
chose the k closest of them based on the distance be-
tween the query vector and the historical values. First,
we divide the time series data, {xt}nt=1 = {x1, x2, ..., xn}
in to two separate parts; for T < n, a training (in-
sample) set {x1, x2, ..., xT } and a testing (or out-of-
sample) set {xT+1, xT+2, ..., xn}. In order to identify
behavioral patterns in the data, we transform the scalar
time series in to time series vectors. We need to choose
an embedding dimension (m) and delay time (τ) to cre-
ate vectors out of the training set. After selecting m and
τ , a time series vector at time t can be written as;

xm,τt = (xt, xt−τ , ..., xt−(m−1)τ ) (1)

where 1 + (m− 1) ≤ t ≤ T

These m-dimensional vectors are often called as
m − histories and the m-dimensional space Rm is
referred to be the phase space of the time series [10].
The primary goal of k-NN method is to use the most
relevant vectors out of the training set in the forecast-
ing. The most relevant vectors are the ones having
similar dynamic behavior as the delay vector xmT . We
compare the distance between the delay vector and all
the other m-history vectors to choose the vectors with
similar dynamic behavior [10]. Then we look for the
closest k vectors in the phase space Rm such that they
minimize the distance function d(xmT , xi).

In k-NN algorithm, m and k are predetermined
constants. In the literature, the optimal values of m
and k are quite ambiguous. There have been quite a lot
argument and discussions about the optimal choice of
m and k since the NN rule was first officially introduced
by Cover and Hart in 1967 [7, 23]. In section 3 We will
discuss the choice of m and k for Mahalanobis distance
along with other distance choices.

For the forecasting we can incorporate variety of
Statistical and time series predicting methods with
NN algorithm. In the literature of k-NN forecasting,
the most commonly used forecasting method is locally
weighted simple linear regression [3, 10]. Thus the
future forecasts were obtained using the following
locally adjusted linear regression model [7]:

x̂T+1 =

m−1∑
n=0

ânxT−mτ + âm (2)

The coefficients were fitted by the linear regres-
sion of xmtj+1on xmtj = (xtj , xtj−τ , ..., xtj−(m−1)τ for
j = 1, 2, ..., k. Thus the estimated coefficients âi are the
values of ai that minimize

k∑
j=1

(xtj+1−a0xtj−a1xtj−1−...−am−1xtj−(m−1)τ−am)2

(3)
The data used in equation (3) are the only k(m + 1)
data values obtained from the k-neighbor vectors of

size m and the corresponding next values, xmtj+1 for
j = 1, 2, ..., k chosen neighboring vectors, not the entire
data.

As the forecasting is completely based on the selected
k nearest neighbors, it is highly important to use a
distance function which captures the relevant behavior
of the data accurately. Many researchers have pointed
out the difficulty of choosing a distance measure for
the NN algorithm that works well for different types of
data. Over the past decades, the most common choice
of distance was Euclidean distance [7, 10]. The way it is
defined, the Euclidean distance is unable to capture the
trend of the highly volatile (hence random) and highly
correlated foreign exchange data when choosing the
neighbors for the NN algorithm. Apart from Euclidean
distance, several other distance measures such as Man-
hattan, Minkowski, and Hamming distances have been
used in the algorithm for various types of classification
problems [13, 23].
Even though the asymptotic probability of error of the
NN is independent of the choice of metric, classification
performance of finite sample nearest neighbor algorithm
is not independent of the distance function [13, 17].
As Nearest neighbor rule is highly sensitive to outliers,
selecting irrelevant neighbors can cause increase in
forecasting error. In their work, Fukunaga & Hostetler
showed that using a proper distance measure, the
variance of the finite sample estimate can be mini-
mized [13]. Short & Fukunaga investigate the relation
between the distance function in k-NN and the er-
ror measure [13]. They concluded that the error
can be minimized by using an appropriate distance
metric without increasing the number of sample vectors.

In time series pattern recognition, an appropriate
distance function can categorize data in to clusters
by capturing the similarity or dissimilarity between
the data. The Euclidean and Manhattan (Absolute)
distances are the commonly used distances measures
in nearest neighbor classification and forecasting algo-
rithm.
Euclidean distance calculates the real straight line

distance between two points and it’s the most common
distance of choice in NN algorithms. It works well for
low dimensional data, it performs poorly when the data
are high dimensional. Also, Euclidean is not the best
distance choice when the data are highly correlated as it
does not account the for correlation among the vectors.
Manhattan distance gets its name from the rectan-

gular grid patterns of the streets in Manhattan [18]. It
looks at the absolute difference between the coordinates.
It is also recognized as a computationally simplified
version of Euclidean distance. Manhattan distance is
preferred to Euclidean distance in practice sometime,
because the distance along each axis is not squared, a
large difference in one of the dimensions will not affect
the total outcome.

2.1.2 Mahalanobis distance

Mahalanobis distance was introduced by P. C. Maha-
lanobis in 1936 by considering the possible correlation
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among the data [9].
Consider n-dimensional vectors x = (x1, x2, ..., xn) and
y = (y1, y2, ..., yn) in Rm. The Mahalanobis distance
between two vectors x and y is defined as:

d(x, y) =

√
(x− y)′

∑−1
(x− y) (4)

Here,
∑−1

is the inverse of variance-covariance matrix∑
between x and y and

′
denotes the matrix trans-

pose. The major difference in Mahalanobis to any other
distance measure is that it takes the covariance in to
account. Due to this reason it is also called Statistical
distance as well.
Mahalanobis distance belongs to the class of generalized
ellipsoid distance defined by

d(x, y) =
√

(x− y)′M(x− y) (5)

Here M is a positive definite, symmetric matrix. In the
case the Mahalanobis distance, the matrix M becomes
the inverse of variance-covariance matrix. Obviously,
this includes Euclidean distances as a special case when
M is the identity matrix.

When using Euclidean distance, the set of points
equidistant from a given location is a sphere. The
Mahalanobis distance stretches this sphere to correct
for the respective scales of the different variables, and
to account for correlation among variables [24]. As
the axes of ellipsoidal sphere can assume any direction
depending upon the data, this is more applicable in
the area of time series pattern recognition. Thus,
unlike dimensional Euclidean distance, it is possible to
express the correlation and weight between dimensions
using Mahalanobis distance. Due to these advantages,
Mahalanobis distance captures the correlation and
the trend of the time series, better compared to other
distances [7, 17].

In our earlier work, we proposed to use Mahalanobis
distance in k-NN algorithm for FX data. We compared
the performance of the Mahalanobis distance based k-
NN algorithm with popular Euclidean and Manhattan
distance based algorithm. Some of the earlier results are
given in the next section.
The performance of the Mahalanobis distance based k-
nearest neighbor algorithm was compared with the time
series forecasting technique, ARIMA in two ways:

(i) Forecast accuracy

(ii) Transforming their forecasts in to a technical trad-
ing rule

In the former case, our goal is to capture the deviation of
the fitted values against the actual observations. In the
latter case, we are interested in looking at the forecasts
in financial point of view.

2.1.3 Measures of Forecasting Accuracy

To capture the deviation of fit, we used commonly
used accuracy measures, Mean square error (MSE),

Means absolute percentage error (MAPE), and Nor-
malized Root Mean Square Error (NRMSE). Apart
from these traditional accuracy measures, the following
version of Theil’s U - statistic (U) to compare the
forecasting accuracy of our model.

U =

√
n∑
t=1

(x̂t − xt)2√
n∑
t

(x̂t)2 +

√
n∑
t

(xt)2
(6)

Here xt is the actual value and x̂t is the fitted value.
U -statistic is a measure of the degree to which the

forecasted values differ from the actual values and is
independent of the scale of the variable. The way it is
constructed, U -statistic necessarily lies between zero
and one, with zero indicating a perfect fit. However, it
does not provide information on forecasting bias, which
is better captured by mean square error.

2.1.4 Trading Decisions

As in any other financial market, in FX market also
a trader’s main goal is to make more money out of
foreign currency fluctuations. The primary goal of
foreign exchange rate forecasting has to be making
proper trading signals: buy and sell at each time step
so that the trader makes more money. To satisfy this
main aspect, first we need to transform forecasts in to
trading signals.

The forecasts were transformed into a simple tech-
nical trading strategy using the trading rule used by
Fernandez-Rodriguez, Sosvilla-Rivero, and Andrada-
Felix in their work [6, 7]. Let r̂t given by

r̂t = ln(x̂t+1)− ln(1 + i
′

t)− ln(1 + it) (7)

be the estimated return from a foreign currency position
over the period (t, t + 1) based on the forecasted FX
rate at time t. Here xt represents the spot exchange
rate at time t, x̂t+1, is the forecasted value for xt+1

is the domestic (US) daily interest rate and i
′

is the
foreign country daily interest rate. The trading signals
at time t are made based on the estimated return t̂t.
The positive returns are executed as long positions
(buy) and the negative returns are executed as short po-
sition (sell) [6, 7]. So the trading decision can be given as

ẑt =

{
1 ; if r̂t > 0
−1 ; if r̂t < 0

(8)

Based on estimated return, we calculate
estimatedtotal(logaccess)return of the trading strategy
over the time period (1, n) as

R̂n =

n∑
t=1

ẑtrt (9)

Here rt is the actual return at time given by

rt = ln(xt+1)− ln(xt)− ln(1 + i
′

t)− ln(1 + it)

We also consider the popular performance measure:
Sharpe ratio to compare the results along with the
estimated total return. The Sharpe ratio, SR used here
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is the mean daily total return of the trading strategy
over its standard deviation,

SR =
µR̂n

σR̂n

(10)

Higher values of Sharpe ratio indicates that the model
is performing better.

2.2 k-Nearest Neighbor Algorithm and
Mahalanobis Distance

2.2.1 Data

The data used here are exchange rates of Euro (EUR),
British pound sterling (GBP), Swiss franc (CHF),
Japanese Yen (JPY), and Canadian dollar (CAD) vis-á-
vis American dollar (USD) obtained from the ProQuest
Statistical Datasets. These are the daily spot rates of
the currencies from January 2006 to December 2010.
In order to make the comparison more effective, we have
considered 1250 data from each currency, and taken 1000
data values as our training sample. The remaining 250
values were considered as the test sample. The coeffi-
cients of the model were updated every time when new
information arrived.

2.2.2 Embedding Dimension (m) and Number
of Nearest Neighbors (k).

The choice of embedding dimension, m, and the num-
ber of nearest neighbors, k in the k-NN forecasting pro-
cedure is a key issue need to be addressed prior to mak-
ing trading signals. Therefore, first we conducted an
empirical investigation to find the optimal values of m
and k. We wanted to figure out whether the choices for
m and k are data dependent, and also distance depen-
dent. The forecasting accuracy was compared using all
the error measures mentioned in section 2.1.3, by vary-
ing the value of m and k along with different distance
functions. 80% of the data was considered as the train-
ing set, and the remaining 20% was taken as the testing
set. After analyzing the results, the key parameters m
and k of the algorithm were chosen as 3 and 20, respec-
tively. The complete results of choosing the embedding
dimension (m) and neighborhood size (k) can be found
in [20].

2.3 Time Series Forecasting Methods

The autoregressive process (AR) and the moving av-
erage process (MA) were very popular representations
among the time series community over the past. Both
of these models are only applicable to stationary time
series data. Each method has its own pros and cons.
The ARMA model combines the AR and MA processes
to have a better forecasting in time series by taking ad-
vantages of both AR and MA methods.

2.3.1 The General mixed Autoregressive Mov-
ing Average (ARMA) Process

The General ARMA(p,q) process is a combination of
an autoregressive process of order, p, and a moving av-
erage process of order, q. Herman Wold was the person
who first put together AR and MA models to create
ARMA process in 1938. Since then, this method has
been used in many areas of time series. ARMA(p,q)
process is defined as;

x
t

= α+φ
1
x

t−1
+ ...+φ

p
x

t−p
+ ε

t
+ θ

1
ε
t−1

+ ...+ θ
p
ε
t−q

(11)
or

Φ
p
(L)x

t
= α+ Θ

q
(L)ε

t

where

Φ
p
(L) = 1− φ

1
L− φ

2
L2 − φ

3
L3 − ...− φ

p
Lp

and

Θ
q
(L) = 1 + θ

1
L+ θ

2
L2 + θ

3
L3 + ...+ θ

q
Lq

The ARMA process is invertible if the roots of
Θ

q
(L) = 0 lie outside the unit circle and stationary if

the roots of Φ
p
(L) = 0 lie outside the unit circle [?, 16].

Note that we need to make the assumption of Θq (L) = 0
and Φp(L) = 0 sharing no common roots [?, 16].

2.3.2 The General mixed Autoregressive Inte-
grated Moving Average (ARIMA) Pro-
cess

In reality, most of the time series are non-stationary.
For non-stationary time series, roots of the AR polyno-
mial do not lie outside the unit circle. Therefore, we are
not able to use the general mixed ARMA(p,q) model
for forecasting. In such cases, the time series can be
converted to a stationary process by differencing. This
is also known as the integrated part of the algorithm.,
which transforms the general stationary ARMA process
in to non stationary ARIMA(p,d,q) process. Here d is
the degree of differencing. The difference filter is nor-
mally given by

(1− L)d where Ljx
t

= x
t−j

(12)

Generally, d will be a positive integer and represents the
number of times x

t
must be differenced to achieve a sta-

tionary transformation. Typically, d ∈ {0, 1, 2, ..., d}.
When d = 0, the ARIMA process becomes station-
ary ARMA process. Thus the autoregressive integrated
moving average, ARIMA(p,d,q) can be written as

Φ
p
(L)(1− L)dx

t
= α+ Θ

q
(L)ε

t
(13)

where

Φ
p
(L) = 1− φ

1
L− φ

2
L2 − φ

3
L3 − ...− φ

p
Lp

and
Θ

q
(L) = 1 + θ

1
L+ θ

2
L2 + θ

3
L3 + ...+ θ

q
Lq

Sometimes, selecting the best order of the ARIMA(p, d,
q) is a challenging task. As the forecasting is strongly
depending on the order of the model, it is highly im-
portant to pick the correct order. The procedure needs
to be completed in two steps. First we need to figure
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out the differencing order, of the process. To determine
the correct order of differencing, we continue the differ-
encing procedure until the time series becomes station-
ary. The Kwiatkowski-Phillips-Schmidt-Shin (KPSS)
test and Augmented Dickey-Fuller unit root test are
normally used to determine the stationarity of a time
series [21].

Once the correct differencing order, d is determined,
the order of AR polynomial, p, and MA polynomial, q
are determined using either Akaikes information crite-
rion (AIC). The AIC normally measures the quality of
each model, relative to each of the other models. It is
defined as

ln(L) = 2M − 2ln(L) (14)

where, M is the number of parameters in the model, and
ln(L) is the unconditional log-likelihood function given
by

ln(L) = −n
2
ln(2πσ2)− 1

2
σ2

n∑
i=1

(x
i
− µ)2 (15)

Here, µ and σ are the mean and the standard deviation
of time series respectively. The AIC is calculated by
changing the values of p and q in the ARIMA model,
and the model with the smallest AIC is usually selected
for forecasting.

3 Results

3.1 k-Nearest Neighbor Forecasting
with Mahalanobis Distance

3.1.1 Embedding Dimension (m) and Number
of Nearest Neighbors (k)

The Table 1 gives the U -statistic values for different
choices of m with Mahalanobis distance. We were able
to obtain similar results with other error measures as
well. We also investigate the choice of neighborhood
size, k with difference distance measures. The Figure
1 gives the U -statistic values for different numbers of
nearest neighbors, (k) with Mahalanobis inductance.

The complete results of choosing the embedding di-
mension (m) and neighborhood size (k) can be found
in [20]. After analyzing the results, the key parame-
ters m and k of the algorithm were chosen as 3 and 20,
respectively.

Figure 1. U-Statistic vs. k with Mahalanobis Distance.

3.1.2 Forecasting Accuracy and Trading Per-
formances of Mahalanobis Distance vs.
Other Distance Measures.

As discussed in section 2.1, the choice of distance plays
a key role in the nearest neighbor algorithm. in our
earlier published work, we have provided sufficient evi-
dence supporting Mahalanobis distance as the choice of
distance in k-NN procedure [19, 20]. We came to this
conclusion by comparing the forecasting accuracy as well
as the trading performances of the 5 currency data sets
with Mahalanobis distance and other traditional dis-
tances such as Euclidean and absolute distances. The
Mahalanobis distance outperforms the traditional dis-
tance functions for all the data sets with respect to the
forecasting accuracy and trading performances. The de-
tails results can be found in [19] and [20].

3.2 Foreign Exchange Rates Forecasting
with general ARIMA Process

In this section, we will first introduce the data
preparation procedure for the same five currency data
sets we used in section 2.2. Then, we will determine the
appropriate ARIMA model for each data set, and finally
compare the ARIMA approach with the Mahalanobis
distance based k-NN forecasting method. In this paper
also, the comparison will be performed according to
two main aspects of forecasting. As the primary step,
we will consider the different error measures discussed
in section 2.1.3 to compare the forecasting accuracy.
As the secondary step, the ARIMA forecasts will
be transformed in to trading signals using the same
technical trading strategy discussed in section 2.1.4
and compare withe the trading performances of k-NN
procedure.

As discussed in Section 2.3.2, the order of differencing
will be determined using the Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) test. For that, we will keep on
differencing the series until the data becomes stationary.
To figure out the order p of AR polynomial and q of
MA polynomial, we are considering a positive constant
m = 5 with p+q = m. Then, we will vary the values of p
and q such that p+ q ≤ m and estimate the parameters;
φ

1
, φ

2
, ..., φ

p
, θ

1
, θ

2
, ..., θ

q
of each ARIMA(p,d,q) model.

The Akaike information criterion (AIC) was computed
for each model to chose the model with the minimum
AIC.

3.2.1 ARIMA Forecasting Model for
EUR/USD Daily Rates

Following the step-by-step procedure we introduced
above, the forecasting model with minimum AIC for the
EUR/USD exchange rates data set was ARIIMA(1,1,1),
that is a combination of first order autoregressive (AR),
and a first order moving average (MA) with the first
difference filter (d = 1) . The model can be explicitly
written with the estimated parameters as below:

(16)(1−0.1329L)(1−L)xt = 0.00019+(1−0.1323L)εt
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Table 1. U -statistic values for different m

Currency m = 3 m = 4 m = 5 m = 6
EUR 0.00389801 0.00392875 0.00430221 0.00456411
GBP 0.00345430 0.00348754 0.00359710 0.00362095
JPY 0.00690517 0.00717526 0.00810838 0.00771370
CHF 0.00555915 0.00572837 0.00586630 0.00590578
CAD 0.00597986 0.00642774 0.00612342 0.00643873

Table 2. U -statistic values for different distance measures (m = 3 & k = 20)

Currency Mahalanobis Euclidean Absolute
distance distance distance

EUR 0.00389801 0.00405640 0.00401522
GBP 0.00345430 0.00377776 0.00374190
JPY 0.00690517 0.00971223 0.01331857
CHF 0.00555915 0.00755257 0.00771336
CAD 0.00597986 0.00648498 0.00619930

By letting εt = 0 , we have the one day ahead forecasting
time series for EUR/USD currency data as

(17)xt = 0.000192 + 1.132915xt−1

− 0.132915xt−2 − 0.132342εt−1

Figure 2. ARIIMA(1,1,1) Forecasts and real values for
EUR/USD daily exchange rates.

3.2.2 ARIMA Forecasting Model for
GBP/USD Daily Rates.

The forecasting model with minimum AIC for the
GBP/USD exchange rates data set was ARIIMA(1,1,2)
model. This process is a combination of first order au-
toregressive (AR), and a second order moving average
(MA), with the first difference filter. The model can
be explicitly written with the estimated parameters as
below:

(18)x
t

=−0.000218556+0.363691x
t−1

+0.636309x
t−2

+ 0.652109ε
t−1

+ 0.063216ε
t−2

3.2.3 ARIMA Forecasting Model for JPY/USD
Daily Rates.

After comparing AIC for JPY/USD rates data set, we
came up with the following ARIMA(1,1,2) model, that
is a combination of second order autoregressive (AR),

Figure 3. ARIMA(1,1,2) Forecasts and real values for GBP/USD
daily exchange rates.

and a first order moving average (MA), with the first
difference filter.

(1− 0.664950L)(1− L)x
t

= 0.00000098+(1−0.400612L

− 0.234753L2)εt

(19)

Expanding the autoregressive operator and the differ-
ence filter and then letting ε

t
= 0, we obtained one

day ahead forecasting time series for JPY/USD currency
data as

(20)xt = 0.00000098 + 1.0.664950xt−1 − 0.664950xt−2

− 0.400612ε
t−1
− 0.234753ε

t−2

3.2.4 ARIMA Forecasting Model for
CHF/USD Daily Rates.

For the CHF/USD daily rates, we found that
ARIIMA(1,1,1) as the model with smallest AIC by vary-
ing the values p and q, after deciding the deference de-
gree as one. The ARIMA process can be explicitly writ-
ten with the estimated parameters as:

(21)xt = 0.000231 + 0.918785xt−1

+ 0.0881215x
t−2
− 0.0881215ε

t−1
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3.2.5 ARIMA Forecasting Model for
CAD/USD Daily Rates.

The forecasting model with the minimum AIC value
for the CAD/USD daily rates was a combination of first
order autoregressive (AR), and a third order moving
average (MA) with the first difference filter, namely,
ARIMA(1,1,3).

(22)
xt = 0.000055 + 1.481798xt−1 − 0.481798xt−2

−0.182836ε
t−1
−0.130882ε

t−2
+0.067018ε

t−2

3.3 k-Nearest Neighbor Forecasting vs.
ARIMA Forecasting - Forecasting
Accuracy

In section 3.2, we discussed in details the general
autoregressive integrated moving average forecasting
models for the five daily exchange rates data sets. The
given figures (Figure 2 & 3 ) indicate that the ARIMA
forecasts follow the actual values pretty well as similar
to the case of k-NN forecasting. In this section, our
goal is to compare the forecasting accuracy of ARIMA
models with our proposed Mahalanobis distance based
k-nearest neighbor forecasting procedure.

We considered all the accuracy measures mentioned
in section 2.1.3 and compared the performances of
each procedure based on how accurate their forecasts
were. The following tables give the U -statistic, mean
square error, and normalized root mean square error
for the currencies EUR, GBP, JPY, CHF, and CAD
with Mahalanobis distance based k-NN algorithm and
ARIMA forecasting models.

According to the obtained results given by tables 3,
4, & 5, we can see that the majority of time (3 out of
5) Mahalanobis distance based k-NN forecasting model
out performs the ARIMA method. In the cases of EUR
and GBP, the general ARIMA process seems to forecast
relatively better compare to the nearest neighbor fore-
casting. Even though our primary goal in this paper is
to compare the trading performances of both methods,
it is necessary to to further analyze the data, and come
up with an explanation behind this situation. For this
purpose, we calculated the following statistical measures
for all the data sets:

• Total Variation -
The total variation or the total sum of squares
(SST) is a measure of the observed values around
the mean. It is comprised the sum of the squares of
the differences of each data value with the mean.

Total variation =

n∑
t=1

(x
t
− x̄)

2

(23)

• Standard Deviation -
In statistics, the standard deviation is a measure
of the spread of scores within a set of data. It is a
measure that is used to quantify the amount of vari-
ation or dispersion of a set of data values. Smaller
the standard deviation, closer the data points to its

mean.

Standard deviation, σ =

√√√√ n∑
t=1

(xt − x̄)2

n
(24)

Considering the calculated values for total variation
and standard deviation (given in table 6), we observed
that the EUR and GBP daily rates have relatively higher
total variation and standard deviation compare to the
remaining data sets.

3.4 k-Nearest Neighbor Forecasting vs.
ARIMA Forecasting - Comparing
Trading Decisions

As it is obvious that currency trader’s main goal is
to make more money, in this section we evaluated these
two prediction models (k-NN and ARIMA) consider-
ing their trading performances. We transformed the
ARIMA forecasts in to trading signals, buy and sell
using technical trading strategy discussed in section
2.1.4. Then, the performance measures, total (log
access) return and Sharpe ratio were calculated and
compared with those of k-nearest neighbor forecasting
technique. Higher values of these measures indicate
that the model is performing better.

The estimated total return and Sharpe ratio for the
technical trading strategy under k-NN algorithm and
ARIMA process are given in tables 7 and 8. The final
conclusion of forecasting model is pretty much same as
that of error measures. Proposed Mahalanobis distance
based k-NN method outperforms the ARIMA process
majority of the time. According to the forecasting
accuracy, both EUR and GBP daily exchange rates data
sets support ARIMA model. However, when comparing
total return and Sharpe ratio, GBP/USD daily rates
pretty much gave the same numerical values for both
the models. Therefore, the results for trading decisions
also indicated that the k-nearest neighbor forecasting
model producing more accurate and profitable trading
signals compared to the general ARIMA process.

The results from section 3.3 and section 3.4 motivates
to investigate more on the behavior of time series
data and the most appropriate forecasting technique.
The primary goal of the next section is to study the
forecasting accuracy of simulated time series data with
both Mahalanobis distance based k-NN method and
the general ARIMA forecasting models.

3.5 Simulation Data Analysis

Time series data simulation plays an important
role in many areas of time series data analysis such
as economics & finance, environmental studies , and
engineering. It is a whole different area of research,
where the researchers have paid much more attention in
the recent history. Generating financial time series such
as exchange rates data is a challenging task compared
to most of the other time series data simulation. A huge
amount of empirical contributions been made towards
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Table 3. U -statistics with k-NN and ARIMA models

Currency k-NN ARIMA
forecasting forecasting

EUR 0.003898012 0.003456137
GBP 0.003454303 0.00318494
JPY 0.00690517 0.008302838
CHF 0.005559151 0.007286362
CAD 0.005979865 0.00731294

Table 4. Mean square error with k-NN and ARIMA models

Currency k-NN ARIMA
forecasting forecasting

EUR 0.00010905 0.00008479
GBP 0.00011439 0.00009725
JPY 0.00024810 0.00035878
CHF 0.00011441 0.000196566
CAD 0.00013689 0.000199935

this topic, and variety of economical, financial and time
series models been proposed and experimented by many
academic and industrial researchers during the last two
decades. As most of the traditional financial theory
based methods failed to match the features displayed by
the actual data, many alternative models were proposed
to overcome the issues of these traditional theory based
models [2].

The purpose of any foreign currency generating
algorithm is to replicate a certain exchange rate by
considering all the financial and economical factors
related to those two countries, which is a complicated
task. In their work Bianchi, Pantanella, and Pianese
claimed that using their proposed multifractional pro-
cess with random exponent, they were successfully able
to replicate EUR/JPY and EUR/USD [2] exchange
rates. Also, Oyediran & Afieroho have worked on
developing an algorithm to simulate many different FX
rates such as European euro, British pound sterling
and the US dollar against the Nigeria naira [18]. Their
simulation models were also developed after analyzing
the historical data of the corresponding currency rates.

All these simulation algorithms have one main goal
in common. Their goal was to develop a procedure well
capture the behavior of a given currency rate, which
was not our intention of simulation study in this work.
The goal here is to capture the behavior(s) of a time
series to decide which forecasting algorithm (k-NN or
ARIMA) would be more beneficial. Even though our
primary interest is forecasting and decision making in
foreign exchange market, for the simulation study we
considered time series data in general.

Auto regressive (AR), moving average (MA), and
general and mix ARIMA models are the most popular
time series data simulation techniques among the time
series research community. These time series processes
have been used by many researchers over the recent
history to replicate time series data using different
computer software such as MATLAB and R [15]. For
the simulation data analysis, several time series data
sets were simulated in MATLAB environment with
the use of the built-in MATLAB functions “arima”
and “simulate”. Since the data were simulated using
ARIMA process, there is always a possibility of having
an advantage of using an ARIMA forecasting model.

The observations from section 3.3 and section 3.4

lead to the conclusion that for a time series data with
a higher volatility, ARIMA forecasting procedure works
better compared to the k-nearest neighbor method. As
can be seen from the table 6, both EUR and GBP data
sets have higher volatility measures compared to the
rest. Due to this reason, the time series were simulated
by varying the standard deviation. We have chosen a
range from 0.00126 to 0.896 to capture the range of
our data sets’ standard deviations. The simulated 9
data sets and their standard deviations listed in Table 9.

The model comparison was performed using the
accuracy measures discussed in section 2.1.3. We
only focused on deviation in fit for this comparison.
To compare the trading decisions, it is necessary to
simulate the interest rates, and also the time series data
replicating real FX data of a certain country, which
is not our interest here. Also the obtained results in
section 2.2 and 3.4 suggest that having more accurate
forecasts always lead to a higher trading performances.

We followed the same data preparation procedure
discussed in section 2.3.2 to build the best model
for each data set when using ARIMA process for
forecasting. Even though the data was simulated with
the specified orders and parameters, we again tested
them for the appropriate differencing order and AR
order, p, and MA order, q. For Mahalanobis distance
based k nearest neighbor algorithm the parameter m
was set to be 3 and k was set to be 20 as in section 3.3.
One step ahead out of sample forecasts were created for
250 test set and the size of the training window was 1000.

The comparison results of U -statistic for the sim-
ulated data are presented in Table 10. It can be
clearly seen that for the data sets 1, 2, and 3, ARIMA
based forecasting models had lower U -statistic values
compared to those of Mahalanobis distance based
k-NN forecasting. Those are the data sets with higher
standard deviations. When the standard deviation is
getting smaller and smaller, k-NN forecasting algorithm
started to perform comparatively better than general
ARIMA process. For the data sets 6 trough 9, the
difference between the U -statistic values are significant.
This supports the claim that for a time series data
with a lower standard deviation, the k-NN method has
a higher forecasting accuracy compared to ARIMA.
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Table 5. Normalized root mean square error with k-NN and ARIMA models

Currency k-NN ARIMA
forecasting forecasting

EUR 0.16748184 0.14691536
GBP 0.22251281 0.20423380
JPY 0.30304086 0.35985560
CHF 0.21693213 0.28301529
CAD 0.58311581 0.65600438

Table 6. Total Variation and Standard Deviation

Currency Total Standard
variation deviation

EUR 10.99275618 0.104846346
GBP 36.55015706 0.191180954
JPY 0.000877177 0.000936577
CHF 4.313622939 0.065678177
CAD 4.193662329 0.064758492

The other error measures also support this argument.
Even these data were simulated using general ARIMA
process, for the time series data with a lower volatility,
k-nearest neighbor forecasting method (with Maha-
lanobis distance) outperforms the ARIMA forecasting
procedure.

We went further and tried to figure out exactly
around what value of standard deviation k-NN proce-
dure starting to work better. Table 10 clearly indicate
that somewhere between the values of 0.127 & 0.283,
k-NN forecasting procedure has started performing
better. To investigate this furthers, couple of more data
sets were simulated with standard deviation between
0.009 and 0.15. Then, we followed the exact same
procedure and predicted 250 future values. From the
given results of U -statistic values in table 11, we can
observe that for the standard deviation values below
0.13, the k-NN has a better forecasting accuracy.

4 Discussion

Still working on it ...

5 Conclusions

In this paper, our main goal was to com-
pare the proposed Mahalanobis distance based
k-NN forecasting with general autoregressive
integrated moving average (ARIMA) process,
which is assumed to be one of the best time
series forecasting technique. As all these fore-
casting methods are data driven models, giving
an optimal forecasting model works with all
types of data is practically a difficult task.

From our results, we can conclude that k-
nearest neighbor forecasting algorithm with
Mahalanobis distance function outperforms
the popular time series forecasting technique,
general ARIMA process, majority of the time.

For the data sets with a relatively higher
total variation (or highly volatile), ARIMA
methods seems to work better compared to the
k-NN forecasting. Our simulation data study
supported this claim as well. Considering the
accuracy measures (U -statistic and MSE), we
can conclude that for time series data with a
smaller standard deviation, k-NN forecasting
procedure more appropriate than the ARIMA
process.

The nearest neighbor algorithm is a nonpara-
metric, on-line learning algorithm. Thus, it does
not require any distributional assumptions, and
data preparation ahead of time. Unlike nearest
neighbor, ARIMA process requires model build-
ing procedure to select proper differencing order
(d), autoregressive order (p), and moving aver-
age order (q). The obtained results proved that
even with all these model building procedure,
still the ARIMA process worked better only for
one currency data set according to the trading
decisions. We discussed in the previous section
(section 2.2) that choosing an appropriate dis-
tance in NN algorithm can improve the fore-
casting significantly. The results obtained in
this paper further support our earlier conclu-
sion. Also, we noticed that the k-NN forecasting
method can be further improve by adjusting the
algorithm according to the previous forecasting
errors, which will be part of our future work.
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Table 7. Total Return k-NN and ARIMA models

Currency k-NN ARIMA
forecasting forecasting

EUR 0.52991777 0.89316418
GBP 4.16807227 4.16807227
JPY 0.67755404 0.47532224
CHF 5.42108879 5.16742874
CAD 4.38589604 4.03711714

Table 8. Sharpe Ratio with k-NN and ARIMA models

Currency k-NN ARIMA
forecasting forecasting

EUR 0.27890809 0.50803011
GBP 2.41593434 2.41593434
JPY 0.18429771 0.12818451
CHF 1.67419376 1.42328537
CAD 1.26400087 1.04713284
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D9 0.001267838 0.00185742 0.01614677
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Table 11. U -statistic for k-NN forecasts and ARIMA forecasts: Simulated data (standard deviation 0.009 - 0.15)

Simulated data k-NN ARIMA
sd U -statistic U -statistic

0.15010000 0.031257268 0.030175564
0.13000000 0.02708489 0.02728483
0.12750000 0.026565797 0.026934802
0.12030000 0.0250823020 025948689
0.10540000 0.021970607 0.023958385
0.10030000 0.020912901 0.02330971
0.09100000 0.018988001 0.022171638
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