
Dynamic Memory Management in Massively Parallel
Systems: A Case on GPUs

Minh Pham
University of South Florida

Tampa, FL, USA
minhpham@usf.edu

Hao Li
University of South Florida

Tampa, FL, USA
hao.li@kla-tencor.com

Yongke Yuan
Beijing University of Technology

Beijing, China
yyk@bjut.edu.cn

Chengcheng Mou
University of South Florida

Tampa, FL, USA
chengcheng@usf.edu

Kandethody
Ramachandran

University of South Florida
Tampa, FL, USA
ram@usf.edu

Zichen Xu
Jiaxing Neofelis Scientific, Inc.

Nanchang, China
zichenxu@outlook.com

Yicheng Tu
University of South Florida

Tampa, FL, USA
tuy@usf.edu

ABSTRACT

Due to the high level of parallelism, there are unique chal-
lenges in developing system software on massively parallel
hardware such as GPUs. One such challenge is designing a
dynamic memory allocator whose task is to allocate memory
chunks to requesting threads at runtime. State-of-the-art
GPU memory allocators maintain a global data structure
holding metadata to facilitate allocation/deallocation. How-
ever, the centralized data structure can easily become a bot-
tleneck in a massively parallel system. In this paper, we
present a novel approach for designing dynamic memory
allocation without a centralized data structure. The core idea
is to let threads follow a random search procedure to locate
free pages. Then we further extend to more advanced de-
signs and algorithms that can achieve an order of magnitude
improvement over the basic idea. We present mathematical
proofs to demonstrate that (1) the basic random search design
achieves asymptotically lower latency than the traditional
queue-based design and (2) the advanced designs achieve

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ICS ’22, June 28–30, 2022, Virtual Event, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9281-5/22/06. . . $15.00
https://doi.org/10.1145/3524059.3532387

significant improvement over the basic idea. Extensive exper-
iments show consistency to our mathematical models and
demonstrate that our solutions can achieve up to two orders
of magnitude improvement in latency over the best-known
existing solutions.

ACM Reference Format:

Minh Pham, Hao Li, Yongke Yuan, Chengcheng Mou, Kandethody
Ramachandran, ZichenXu, and Yicheng Tu. 2022. DynamicMemory
Management in Massively Parallel Systems: A Case on GPUs. In
2022 International Conference on Supercomputing (ICS ’22), June 28–
30, 2022, Virtual Event, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3524059.3532387

1 INTRODUCTION

GPUs have become an indispensable component in today’s
high-performance computing (HPC) systems and have shown
great value in many compute-intensive applications. In addi-
tion, there is also a strong movement of developing system
software on GPUs, such as database management systems.
[25, 33, 39–41] Dynamic memory allocation on GPUs was
first introduced about ten years ago by NVIDIA and many
other solutions have been proposed since then [38]. Many
GPU-based applications benefit from dynamic memory allo-
cation such as graph analytics [9, 37], data analytics [5, 31],
and databases [4, 18].
There are unique challenges in developing system soft-

ware on massively parallel hardware, mostly imposed by the
need to support a large number of parallel threads efficiently
and the architectural complexity of the GPU hardware. Dy-
namic memory allocators in particular face challenges such

1

https://doi.org/10.1145/3524059.3532387
https://doi.org/10.1145/3524059.3532387

ICS ’22, June 28–30, 2022, Virtual Event, USAMinh Pham, Hao Li, Yongke Yuan, Chengcheng Mou, Kandethody Ramachandran, Zichen Xu, and Yicheng Tu

as thread contention and synchronization overhead, and mul-
tiple studies [38] have proposed solutions to address these
challenges. Similar to traditional memory allocators, such
solutions utilize a shared data structure to keep track of
available memory units [38]. For example, the state-of-the-
art solution, Ouroboros, uses a combination of linked-lists,
arrays, and queues to reduce thread contention and memory
fragmentation and was shown to outperform previous solu-
tions in a recent comparative study [38]. Nevertheless, we
show in section 2 that thread contention, synchronization
overhead, and memory overhead are still problematic with
such solutions.
GPUs are designed to be high-throughput systems – its

performance depends on running a large number of parallel
threads. A modern CPU could run tens of threads simultane-
ously while it is common to see tens of thousands of active
threads in a GPU. Existing memory allocators maintain a
global state (e.g., head and tail of a queue) to keep track of
available memory units. The allocation/deallocation opera-
tions have to access such states in a protected manner. The
protection can be done via a software lock (e.g., mutex), with
a latency at the hundred-millisecond level on CPU-based
systems. [15, 23] Hardware-supported mechanisms called
atomic operations are widely used to relieve such a bottle-
neck. However, while used in GPUs, this strategy still carries
excessively high overhead. Although fast, atomic operations
have to be executed sequentially in case of conflicts – the
large number of concurrent threads in GPUs leads to a long
waiting queue in atomic access to global states.

Figure 1: Average latency in accessing a global variable

via atomic operations in different NVidia GPUs.

Figure 1 reports our collected data for the average latency
of performing an atomic operation against one global 32-bit
integer under varying number of concurrent (active) threads.
Clearly, the average latency per thread grows linearly with
the number of concurrent threads.
In this paper, we present a high-performance memory

allocation framework for GPUs. Unlike traditional wisdom
that involves global states, this is a fundamentally new solu-
tion that carries very little overhead in allocating memory
and is almost free for releasing memory. Instead of keeping
any global state explicitly, we let the threads statistically

find the locations of available memory units via a random
algorithm. We develop analytical models to demonstrate that
our method achieves asymptotically shorter latency than the
state-of-the-art GPU memory allocators.

We also report a number of techniques to further improve
the performance of the random method. Specifically, we
present the use of bitmap to reduce the number of expected
steps needed to find a free page by a factor of 32 or 64 and a
page sharing mechanism among neighboring threads that
essentially minimizes resource waste due to code divergence.
Based on these two techniques, we also develop an algorithm
for serving requests of multiple consecutive pages. The per-
formance advantage of our solutions is fully supported by
extensive experiments. In particular, in a unit-test environ-
ment, our solution was found to deliver a speedup of up to
two orders of magnitude over the best existing solutions.

Paper Organization: Section 2 sketches the current state-of-
the-art and its drawbacks; Section 3 introduces our memory
management framework, key algorithms, and the mathe-
matical reasoning behind our designs; Section 4 presents
advanced techniques with improved performance; Section
5 shows results of experimental evaluation (unit-tests and
a case study) in comparison with the state-of-the-art; Sec-
tion 6 presents a brief survey of related work, and Section 7
concludes this paper.

2 BACKGROUND

Dynamic Memory Allocation in CPU-based Systems. Mem-
ory allocators on CPUs have been well studied since the
1960s [35]. Some of the most popular mechanisms include
Sequential Fits (a single linked-list of all free pages), Seg-
gregated Free Lists, Buddy Systems (multiple memory pools
of power-of-two in size), Indexed Fits (page information
indexed in arrays), and Bitmapped Fits (page information
indexed in bitmaps). Popular implementations are the GNU
malloc [17] and the Hoard malloc [6], both of which use
multiple arenas for concurrent processing.

Dynamic Memory Allocation in GPU-based Systems. In
CUDA, we often pre-allocate a certain amount of global
memory (via cudaMalloc function) to serve all runtime
memory needs of a GPU kernel. However, memory con-
sumption is unknown beforehand in many applications. This
renders either over-allocation or terminating the kernel due
to lack of memory. The typical approach [19] to deal with
this problem is to run the task twice: the first run is only
for calculating the output size, then the output memory can
be precisely allocated, and the second run will finish the
task. This obviously carries unnecessary overhead. Thus, a
major challenge on GPU systems is to dynamically allocate

2

Dynamic Memory Management in Massively Parallel Systems: A Case on GPUs ICS ’22, June 28–30, 2022, Virtual Event, USA

device memory for output results without interrupting ker-
nel execution. In 2009, NVidia released a dynamic memory
allocator for CUDA [24]. That started a series of efforts on
this topic, including XMalloc (2010) [20], ScatterAlloc (2012)
[29], FDGMalloc (2013) [34], HAlloc (2014) [2], Reg-Eff (2015)
[32], DynaSOAr (2019) [28], and Ouroboros (2020) [36]. A
recent comparative study [38] showed that Ouroboros out-
performed all aforementioned methods in both allocation
performance and space efficiency and thus can be considered
the state-of-the-art.

Figure 2: Ouroboros’s design [36]: memory chunks are

used to extend virtualized queues upon allocation re-

quests. Multiple queues are maintained, each serving

requests of different sizes

Figure 2 illustrates Ouroboros’ design. Ouroboros divides
the managed memory region into multiple queues, each serv-
ing a different page size. Instead of pre-allocating memory
for the queues, the concept of Virtualized Queues was intro-
duced. The main idea is that queues are dynamically stored
on pages in the pool and a new large page (chunk) is only
allocated to a queue the when it actually needs more space.
In this design, the authors avoided pre-allocating memory
for all the queues. By using a semaphore, Ouroboros suffers
from the long latency in accessing queue states by concur-
rent threads. Ouroboros’ design creates significant memory
overhead when request sizes are not close to and lower than
the pre-determined sizes and significant latency when there
are many requests of similar sizes.

3 PARALLEL MEMORY ALLOCATION

3.1 Core Idea

We elaborate on our idea by first assuming the GPU global
memory is divided into pages of equal size, and each memory
allocation requests exactly one such page (we will relax this
assumption in Section 4.3). The core technique is a Random
Walk (RW) algorithm that does not depend on any global

Threads

Buffer Pool

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

1 2 3 4 5 6 7

Figure 3: A case of the RW-based page request algo-

rithm. The path visited by the same thread is colored

the same. Blue pages are free, red pages are occupied.

state to manage page allocation and recycling. Instead of
using a few mutex locks or queues on global memory for
the entire system, each page will have its own mutex lock,
i.e., once the used flag in a page is set, it is considered not
available. In requesting a page, each thread will generate a
random page ID. If the corresponding page is free, the thread
will get the page. Otherwise, the thread will generate a new
page ID until it finds one free page. The main idea is: we
let all threads act independently and therefore there is no
need to wait in a queue for accessing a shared state. This
releases the parallel computing power of the GPU to the
greatest extent. Figure 3 shows an illustrative example of
how seven parallel threads get their free pages. Here the
blue squares represent free pages, and red ones represent
occupied pages. Each thread repetitively generates random
page IDs until it finds a free page. If more than one threads
select a page at the same time, one of them can acquire the
page through an atomic operation while the others continue
their search without waiting. The chance of this happening
is low as proven in section 3.2.2.
Detailed implementation of the RW-based memory al-

location (we name it getPage) algorithm can be found in
Algorithm 1. Note that in this paper, all pseudo-code is pre-
sented from the perspective of a single thread, reflecting the
single-program-multiple-data (SPMD) programming model
for modern GPUs.
By the first look, RW is counter-intuitive: the number of

steps to get a free page can be big (e.g., 5 steps for thread
2). However, we show that the the average number of steps
taken by all threads is highly controllable under most sce-
narios. Our analysis in Section 3.2 will clearly show this.

Deallocation: A great advantage of our method is: the de-
allocation (named freePage) is almost free! Specifically, we
only need to clear the used bit of the corresponding page.

3.2 Performance Analysis

Since there will be many notations in this section, common
notations are summarized in Table 1 for easier reference.

3

ICS ’22, June 28–30, 2022, Virtual Event, USAMinh Pham, Hao Li, Yongke Yuan, Chengcheng Mou, Kandethody Ramachandran, Zichen Xu, and Yicheng Tu

Algorithm 1: getPage based on Random Walk
output : the ID of a free page
1: while True do
2: p← random integer within [0,𝑇)
3: if pages[p].used is false then
4: try to set pages[p].used to true
5: if Above is a success then
6: return p
7: end if

8: end if

9: end while

Table 1: Common notations

Notation Meaning

𝑇 Total number of pages

𝐴 Total number of free pages

𝑁 Number of threads

𝑋𝑖
Number of steps for thread 𝑖 to find a
free page

𝑌
Maximum number of steps to find a
free page within a warp

TAS, 𝐸 (𝑋𝑖) Per-Thread Average Steps

WAS, 𝑌 Per-Warp Average Steps

𝑤
Number of bits on the bitmap that can
be read by a single instruction

3.2.1 Metrics for Performance Analysis. In general, latency
(of individual threads and all the threads) is an appropriate
metrics for evaluating the performance of memory man-
agement mechanisms. However, the actual running time of
a CUDA function is affected by many factors. Instead, we
propose the following two metrics:

1. Per-Thread Average Steps (TAS): the average num-
ber of steps taken to find a free page for a thread. In
Algorithm 1, this is essentially the average number
of iterations executed for the while loop. While the
latency of one step is not the same for all designs and
implementations, we choose to focus on the number
of steps in this analysis because it is a major indicator
of scalability.

2. Per-Warp Average Steps (WAS): the average of the
maximum number of steps taken among all threads in
a warp.

Both metrics are directly correlated to latency. In CUDA,
the basic unit of execution is a warp – a group of 32 threads

that are scheduled and executed simultaneously by a stream-
ing multiprocessor. The entire warp will hold the computing
resources until all threads in it exited. In other words, the la-
tency of a warp is the maximum latency among all 32 threads
in the warp. Thus, WAS is a better indicator of total running
time, yet we achieve more rigorous analysis of TAS.

In the remainder of this paper, we use the following nota-
tions in our mathematical analysis :

• For any warp, let 𝑋𝑖 (0 ≤ 𝑖 ≤ 31) be the random vari-
able representing the number of steps taken until find-
ing a free page. TAS is the expected value of 𝑋𝑖 , de-
noted as 𝐸 (𝑋𝑖);
• Let 𝑌 = 𝑚𝑎𝑥 (𝑋𝑖) be the max number of steps taken
by a thread to find a free page within a warp. WAS is
then the expected value of 𝑌 , denoted as 𝐸 (𝑌𝑖);
• 𝑇 is the total number of buffer pages;
• 𝐴 is the number of available buffer pages;
• 𝑁 is the total number of concurrent threads.

Due to page limits, we will focus on the analytical results
while skipping the proof.

First of all, we can easily show that in a queue-based so-
lution such as Ouroboros, the TAS is 𝐸 (𝑋𝑖) = 𝑁+1

2 and 𝐸 (𝑌)
can be derived by the Faulhaber’s [22] formula as:

𝐸 (𝑌) = 𝑁 −
𝑁 33

33 +
𝑁 32

2 +
8𝑁 31

3 −
124𝑁 29

3 + ...
𝑁 32 ≈ 32

33
𝑁 (1)

Both metrics are linear to N, consistent with results in
Figure 1. Maintaining multiple queues will not wipe out the
issue, it is easy to show that both TAS and WAS are still
linearly related to 𝑁 .

3.2.2 Analysis of TAS. The process of acquiring a free page
by 𝑁 parallel threads can be viewed as 𝑁 parallel series of
Bernoulli trials. If there is only one thread requesting a page,
its Bernoulli trials have a constant probability of success.
When there are multiple threads, a thread’s Bernoulli trials
will have a decreasing probability of success over time.

To simplify the discussion, we treat the𝑁 series of Bernoulli
trials as if they are performed sequentially, i.e., one only
starts after another has finished, and still achieve the same
results as the parallel process. This treatment is safe because
of two reasons. First, two parallel threads can totally be per-
formed sequentially if they do not cross path. Second, if two
threads cross path, the outcome should still be the same as
in the sequential case. For example, in Figure 3, thread 5 and
thread 7 cross path at page 8, and the outcome is the same
as if thread 7 starts executing after thread 5.
Before the first thread executes, there are 𝐴 free pages

out of the total 𝑇 pages. Therefore, the number of steps that
the first thread takes until finding a free page, 𝑋0, follows a

4

Dynamic Memory Management in Massively Parallel Systems: A Case on GPUs ICS ’22, June 28–30, 2022, Virtual Event, USA

geometric distribution with 𝑝 = 𝐴/𝑇 . Therefore,
𝐸 (𝑋0) = 1/𝑝 = 𝑇 /𝐴

After the first thread finishes and before the second thread
executes, there are only 𝐴 − 1 pages free. Therefore, the
number of steps taken until finding a free page, 𝑋1, follows
a geometric distribution with 𝑝 = (𝐴 − 1)/𝑇 . Therefore,

𝐸 (𝑋1) = 1/𝑝 = 𝑇 /(𝐴 − 1)
Generalizing the above, the average number of steps taken

across all 𝑁 threads is

𝐸 (𝑋𝑖) =
1
𝑁

𝑁−1∑︁
𝑗=0

𝑇

𝐴 − 𝑗
=

𝑇

𝑁

𝑁−1∑︁
𝑗=0

1
𝐴 − 𝑗

=
𝑇

𝑁
(𝐻𝐴 − 𝐻𝐴−𝑁)

where 𝐻𝑛 =
∑𝑛

𝑘=1
1
𝑘
is the harmonic series.

We use the Euler-Mascheroni constant [8] to approximate
the harmonic series 𝐻𝑛 ≈ 𝛾 + ln𝑛. The expected average
number of steps is then approximated by

𝐸 (𝑋𝑖) ≈
𝑇

𝑁
𝑙𝑛

(
𝐴

𝐴 − 𝑁

)
(2)

Unlike the queue-based solution with latency linear to
𝑁 , Eq. (2) tells us that the value grows very little with the
increase of 𝑁 . Specifically, under a wide range of 𝑁 values,
the item 𝑙𝑛(𝐴

𝐴−𝑁) increases very slowly (in a logarithmic
manner), and the increase of 𝐸 (𝑋𝑖) will be further offset by
the inverse of 𝑁 . The only situation that could lead to a large
TAS is when𝐴 ≈ 𝑁 , i.e., when there are barely enough pages
available for all the threads.
The above analysis can be verified in Figure 4(a) where

we plot the value of formula (4) under different 𝐴 and 𝑁

values with𝑇 = 1𝑀 . We chose five different𝐴 values , which
correspond to 50%, 10%, 1%, 0.7%, and 0.5% of total pages 𝑇 .
Note that the case of 0.5% is an extreme scenario – when
𝑁 = 5, 000, there is only one page available for each thread –
yet the 𝐸 (𝑋𝑖) values we calculated are still much lower than
that of the queue-based method.

Figure 4: Change of TAS (a) and WAS (b) values under

different 𝑁 and 𝐴 values of the RW-based algorithm in

comparison to that of a queue-based solution

Independence Among Threads: The above analysis did not
consider the scenario in which multiple threads try to atomi-
cally acquire a free page at the same time. As a result, actual
TAS values can be larger due to such collisions. This can be

modeled via the well-studied Birthday Paradox problem: we
have 𝑇 birthdays (pages) and 𝑁 people (threads). In particu-
lar, the expected number of collisions is 𝑁 (𝑁−1)

2𝑇 (see Eq. (2) in
[26]). This number should be small in any reasonable setup,
e.g., with 1 million total pages and 5,000 concurrent threads,
the expected number of collisions is only 12.5. Furthermore,
performance penalty due to atomic operations exists only
when the 𝑝-th page is free (i.e., line 4 of Algorithm 1). Hence,
the expected number of collisions is further bounded by

𝑁 (𝑁 − 1)
2𝑇

× 𝐴

𝑇

3.2.3 Analysis of WAS. Deriving a closed-form for 𝐸 (𝑌) is
difficult, but we can find an upper bound of 𝐸 (𝑌) as follows.
We observe that during the process of𝑁 threads’ each getting
a page, the probability of finding a free page at any moment
in the process is at least 𝐴−𝑁

𝑇
. The reason is that 𝐴 is in

the [𝐴 − 𝑁,𝐴] range during the process. Therefore, 𝐸 (𝑋𝑖)
is upper bounded by 𝐸 (𝑋 ′𝑖) where 𝑋 ′𝑖 follows a Geometric
distribution with probability 𝑝 = 𝐴−𝑁

𝑇
.

Since 𝐸 (𝑋𝑖) is upper bounded by 𝐸 (𝑋 ′𝑖), 𝐸 (𝑌) is also upper
bounded by 𝐸 (𝑌 ′) where 𝑌 ′ =𝑚𝑎𝑥 (𝑋 ′𝑖) as follows:

𝐸 (𝑌) <
∞∑︁
𝑘=0

[
1 −

(
1 −

(
𝑇 −𝐴 + 𝑁

𝑇

)𝑘)32]
(3)

In Figure 4(b), we plot the calculated values of the RHS
of Eq. (3) with 𝑇 = 1𝑀 . Obviously, this bound is larger
than 𝐸 (𝑋𝑖) (Figure 4(a)) under the same parameters. Same
as 𝐸 (𝑋𝑖), the bound of 𝐸 (𝑌) is still significantly smaller than
the queue-based latency, even under small 𝐴/𝑇 values such
as 0.7%. For the extreme case of 𝐴/𝑇 = 0.5%, we start to see
the bound climb higher than the 𝐸 (𝑋𝑖) value of the queue-
based method. This can be viewed as a drawback of the RW
method, and we will address that in Section 4.2.

4 EXTENSIONS

The basic RW algorithm can be extended in several directions.
First, the memory allocation performance of RW deteriorates
when the the percentage of free pages is small. This is caused
by the large TAS values under a small 𝐴/𝑇 ratio, and wors-
ened by the gap between TAS and WAS. In this section, we
present two advanced techniques that address the above two
issues (Sections 4.1 and 4.2). Furthermore, such design allows
efficient implementation of functions that request memory
of an arbitrary size (Section 4.3).

4.1 A Bitmap of Used Bits

In each step of getPage in the basic RW design, a thread
visits one page at a time. As a result, it could take many
steps to find a free page, especially under a low 𝐴/𝑇 ratio.

5

ICS ’22, June 28–30, 2022, Virtual Event, USAMinh Pham, Hao Li, Yongke Yuan, Chengcheng Mou, Kandethody Ramachandran, Zichen Xu, and Yicheng Tu

To remedy that, we use a Bitmap to store all pages’ used
bits in consecutive (global) memory space. We can utilize
a GPU’s high memory bandwidth and in-core computing
power to achieve extremely efficient scanning of the bitmap
to locate free pages. For example, the Titan V has global
memory bandwidth of 650+GBps, and 3072-bit memory bus.
Meanwhile, the CUDA API provides a rich set of hardware-
supported bit-operating functions. In practice, the bitmap
can be implemented as an array of 32-bit or 64-bit integers
(words) so that we can visit a group of 32 or 64 pages in a
single read. Finding a free page now reduces to finding a
word from the bitmap that has at least one unset bit. Such
an algorithm (named RW-BM) can be easily implemented by
slightly modifying Algorithm 1 (details skipped).

4.1.1 Performance of RW-BM. When there are𝐴 pages avail-
able, and we read𝑤 bits at a time, the probability of finding
a group with at least a free page is 1 − (𝑇−𝐴

𝑇
)𝑤 . Following

the same logic in deriving Eq. (2) and Eq. (3), we get:

𝐸 (𝑋𝑖) =
1
𝑁

𝑁−1∑︁
𝑗=0

1
1 −

(𝑇−𝐴+𝑗
𝑇

)𝑤 (4)

In fact, Eq. (3) is a special case of Eq. (2) with𝑤 = 1, and
the following theorem shows their difference.

Theorem 1. Denote the TAS 𝐸 (𝑥) for RW-BM as 𝑈 ′, and
that for the basic RW algorithm as𝑈 , we have

lim
𝐴→𝑁

𝑈 ′ =
𝑈

𝑤

Proof. The proof is achieved via the Euler-Maclaurin for-
mula [1], details skipped. □

Similarly, the upper bound of WAS in RW-BM becomes

𝐸 (𝑌) <
∞∑︁
𝑘=0

[
1 −

(
1 −

(
𝑇 −𝐴 + 𝑁

𝑇

)𝑤𝑘)32]
(5)

and we also get the following theorem.

Theorem 2. Denote the upper bound of 𝐸 (𝑌) for RW-BM
as 𝑉 ′, and that for the basic RW algorithm as 𝑉 , we have

lim
𝐴→𝑁

𝑉 ′ =
𝑉

𝑤
+ 𝑤 − 1

2𝑤
The above theorems are encouraging: both TAS and the

WAS bound decrease by a factor up to𝑤 , i.e., 32/64. Plus, the
advantage of RW-BM is the highest when 𝐴→ 𝑁 , which is
the extreme case of low free page availability.

For each word in the used bitmap, we introduce a lock bit
and store in another bitmap called LockMap. This LockMap
is for the implementation of low-cost locks (Section 4.2).

Memory Overhead: RW-BM is memory efficient: a one-bit
overhead is negligible even for page sizes as small as tens of
bytes, and the total size of the LockMap is even smaller.

4.2 Collaborative Random Walk Algorithm

The basic RW design suffers from the large difference be-
tween TAS and WAS. To remedy that, our idea is to have the
threads in the same warp work cooperatively – threads that
found multiple pages from the bitmap will share the pages
to others that did not find anything. This can effectively re-
duce the longest steps of RW by the threads in a warp. The
algorithm repeats two steps: (1) the threads work together to
find free pages and (2) the identified free pages are assigned
to individual threads according to their needs. All threads
participate in both steps, this leads to fewer iterations and
the values of TAS and WAS become the same.
Efficient implementation of the above idea is non-trivial.

The main challenge is to keep track of the found pages and
distribute them to requesting threads in a parallel way. We
design a Collaborative Random Walk (CoRW) algorithm (Al-
gorithm 2) by taking advantage of CUDA shuffle instructions
that allow access of data stored in registers by all threads in
a warp, and other intrinsic functions. By working on data sit
in registers, all such functions have very low latency thus
ensure a good tradeoff between more instructions and less
memory access (i.e., reduced WAS).
In Algorithm 2, needMask is a 32-bit mask representing

what threads still need to get a page and hasMask those that
find a free page during the search process. We perform the
search process on all threads until all threads have obtained
a page, i.e., needMask becomes 0 (line 4). The repeated search
process is as follows. First, each thread reads a random word
of the bitmap (line 7) denoted as BitMap[p]. Note the use of
LockMap here: we first try to set the value of LockMap[p] to
1, this essentially locks the word BitMap[p] and is done via a
single atomic operation (line 6). A key innovation here is: if
the word was already locked by other threads (when 𝑟 = 1),
we cannot use the word as a source of free pages. Instead of
idling, it will return a word with all bits set, and continue
the rest of the loop body acting as a consumer of free pages.

We then share the free pages among threads (lines 10 to 16)
while some thread still need a page and some thread still has
a page to share (line 9). This is difficult because the CUDA
shuffle instructions only allow a thread to read data from
another thread, i.e., the receiving threads have to initiate the
transfer. Therefore, our solution is to calculate the sending
lane ID t’ as follows. Each thread calculates s, the number
of threads with lower lane ID that still need to get a page
as indicated by needMask (line 12). Then this thread has to
obtain the (s+1)-th page found within the warp because the
first s pages should be given to the lower lanes. Therefore,
t’ is the position of the (s+1)-th set bit on hasMask. Here
𝑓 𝑘𝑠 is a function for finding the 𝑘-th set bit by using log(𝑤)
population count (popc) operations (details skipped). This
allows us to calculate the sending thread t’ (line 13). Finally,

6

Dynamic Memory Management in Massively Parallel Systems: A Case on GPUs ICS ’22, June 28–30, 2022, Virtual Event, USA

Algorithm 2: Collaborative getPage within a warp
input :𝑤 : word length, typically 32 or 64
output :pageID: ID of a free page acquired
1: t← lane ID (0-31) of this thread
2: pageID← -1
3: needMask← 𝑏𝑎𝑙𝑙𝑜𝑡_𝑠𝑦𝑛𝑐(pageID==-1)
4: while needMask do

5: p← random integer within [0,𝑇 /𝑤)
6: r← Atomically set LockMap[p] to 1
7: P← (𝑟 == 1)? 0xffffffff : BitMap[p]
8: hasMask← 𝑏𝑎𝑙𝑙𝑜𝑡_𝑠𝑦𝑛𝑐(P≠0xffffffff)
9: while needMask≠0 and hasMask≠0 do
10: Find the first 0 bit on P and set it to 1
11: b← corresponding pageID of the bit set above
12: s← 𝑝𝑜𝑝𝑐(∼(0xffffffff<<laneID) & needMask)
13: t’← pageID==-1? 𝑓 𝑘𝑠(hasMask, s+1)-1 : -1
14: pageID← 𝑠ℎ𝑓 𝑙_𝑠𝑦𝑛𝑐 (𝑏, 𝑡 ′)
15: needMask← 𝑏𝑎𝑙𝑙𝑜𝑡_𝑠𝑦𝑛𝑐(pageID==-1)
16: hasMask← 𝑏𝑎𝑙𝑙𝑜𝑡_𝑠𝑦𝑛𝑐(P≠0xffffffff)
17: end while

18: Release LockMap[p] if r==0
19: end while

20: return pageID

P1,P2,P3

t 10 2 43 5

Pages Found

pageID -1 -1 -1 -1 -1 -1

b - P1 P4 - P6 -1

s 0 1 2 3 4 5

t' 1 2 5 -1 -1 -1

pageID P1 P4 P6 -1 -1 -1

b - P2 P5 - - -

s 0 0 0 0 1 2

t' -1 -1 -1 1 2 -1

pageID P1 P4 P6 P2 P5 -1

b - P3 - - - -

s 0 0 0 0 0 0

t' -1 -1 -1 -1 -1 1

pageID P1 P4 P6 P2 P5 P3

P6P4,P5

Figure 5: Step-by-step (from top to bottom) changes of

key variables in 6 threads running CoRW.

the value of variable 𝑏 hold by thread 𝑡 ′ is transferred to this
thread via the shfl_sync function (line 14).
Figure 5 shows an illustrative example with 6 threads

requesting pages. Since threads 1, 2 and 4 found 6 pages
altogether, we can serve all requests in one round. Without
CoRW, threads 0, 3, 5 will have to access the bitmap again.
Our CoRW implementation is efficient because all data

(other than Bitmap[p]) are defined as local variables and thus
stored in registers. Furthermore, all steps (except reading
BitMap[p]) are done via hardware-supported functions with
extremely low latency. For example, finding the number of
set bits in a word (popc) requires only 2 clock cycles and
execution of fks can be done in the low tens of cycles. Such

Algorithm 3: RW_malloc
input :n, number of consecutive pages to find
output : the ID of the first free page
1: t← lane ID (0-31) of this thread
2: pageID← -1
3: needMask← 𝑏𝑎𝑙𝑙𝑜𝑡_𝑠𝑦𝑛𝑐(pageID==-1)
4: while needMask ≠ 0 do
5: If 𝑡 == 0 then p← random integer within [0,𝑇 /𝑤)
6: P← BitMap[p+t]
7: S, L← first range of consecutive unset bits on P
8: hasMask← 𝑏𝑎𝑙𝑙𝑜𝑡_𝑠𝑦𝑛𝑐(L>0)
9: while hasMask≠0 and needMask≠0 do
10: for 𝑡 ′ : 0→ 31 do

11: S1← 𝑠ℎ𝑓 𝑙_𝑠𝑦𝑛𝑐 (𝑆, 𝑡 ′)
12: L1← 𝑠ℎ𝑓 𝑙_𝑠𝑦𝑛𝑐 (𝐿, 𝑡 ′)
13: If pageID==-1 and L1>=n then take←true
14: if this has the lowest t whose take==true then
15: Atomically set the s1→S1+L1-1 bits of

BitMap[p+t’]
16: If success then pageID← corresponding page ID
17: end if

18: end for

19: needMask← 𝑏𝑎𝑙𝑙𝑜𝑡_𝑠𝑦𝑛𝑐(pageID==-1)
20: S, L← next consecutive unset bits on P
21: hasMask← 𝑏𝑎𝑙𝑙𝑜𝑡_𝑠𝑦𝑛𝑐(L>0)
22: end while

23: end while

24: return pageID

latency is in sharp contrast to reading the bitmap from the
global memory, which requires a few hundred cycles [3, 16].

4.3 Allocating Multiple Consecutive Pages

Our work on RW-BM and CoRW paved the way towards
allocation consecutive memory of an arbitrary size (we name
the function as RW_malloc). We still divide the memory
pool into small units of the same size and store the used
bits in a bitmap. Thus, the problem of getting X bytes by
RW_malloc reduces to getting 𝑛 = ⌈𝑋/𝑆⌉ consecutive units
where 𝑆 is the unit size. Following the RW design, threads
scan the bitmap in a parallel and random manner. Instead of
a single unset bit, we need to find 𝑛 consecutive unset bits.
RW_malloc can be viewed as an extension of CoRW

(detailed design in Algorithm 3 and an illustrative example in
Figure 6). However, instead of each thread’s reading a random
word, all (active) threads in a warp will read in consecutive
words to get a large region (e.g., 4096 bits) of the bitmap.
Then each thread will scan a small part (e.g., one word) of the
region to find all consecutive unset bits (called free segments).
Free segments running across two neighboring words are
also connected. Critical information (e.g., starting position,
length, used or not) of all free segments are stored in local
registers. Finally, threads use shuffle instructions to read all

7

ICS ’22, June 28–30, 2022, Virtual Event, USAMinh Pham, Hao Li, Yongke Yuan, Chengcheng Mou, Kandethody Ramachandran, Zichen Xu, and Yicheng Tu

Region
BitMap

T0 T1 T2 T3

0

2

26250

3410

BitMap
Region

T3T2T1T0

Finding free segments

S

L

Free

Ranges

Allocating segments

n

T0

1 2 3 6

T3 T1 T2

Figure 6: An example of 4 threads running RW_malloc.

free segments found within the warp and find a free segment
that can serve its RW_malloc request.
As compared to CoRW, the main innovation is finding a

range (S, L) of consecutive unset bits on a word (line 7 and
22) where S is the starting position and L is the length of the
unset bits. Here we only need to find the first of such ranges,
share it among the warp, find the next range, and repeat.
Finding the first unset range can be done very efficiently
by using the intrinsic function Count Leading Zero (clz) as
follows. First, we complement the word and use clz to find
the number of leading set bits. Next, we unset the leading
set bits and use clz again to find the number of leading unset
bits. Finally, S is equal to the number of leading set bits, and
L is equal to the difference of the leading unset bits and the
leading set bits. Sharing ranges among a warp is performed
in a similar manner as in CoRW.
Due to the fast scanning of the bitmap, RW_malloc in-

herits the good performance of RW-BM, as multiple bits
can be visited at once. As compared to CoRW, the cost of
RW_malloc is higher because we have to read all segments
in a warp to find a suitable one. However, since all data is
stored in registers and shared by shuffle instructions, the
overall performance is still much higher than Ouroboros.

In malloc-style allocations, in addition to latency, we also
need to consider utilization of memory. The size of the basic
memory unit, the page, is a key parameter that affects space
efficiency. As large pages may contain wasted space, we pre-
fer small page sizes. However, When 𝑆 is too small, we face
the challenge of scanning large chunks of the bitmap, lead-
ing to degraded RW_malloc performance. Our solution is to
aggregate requests for small sizes within a warp and treat the
aggregated sizes as a single request. Once we have found con-
secutive pages that fit the aggregated request, the allocated
space is then distributed to the original small request.

5 EXPERIMENTAL EVALUATION

5.1 Experimental Setup

Weperform experiments to compare ourmethodswithOuroboros.
We use the same Ouroboros code and environment configu-
rations as presented in [36] to ensure a fair and meaningful
comparison. In all experiments, we configure both Ouroboros
and our systems to have a total of 8 GB in memory pool and
to serve the maximum request size of 8192B. Each chunk in
the Ouroboros system is 8192B large and there are ten pro-
cessing queues which process requests of size 8192B, 4096B,
2048B, etc.
On our side, we evaluate three types of systems: basic

Random Walk without bitmap (RW), Random Walk with
Bitmap (RW-BM), and Collaborative Random Walk (CoRW).
In RW-BM and CoRW, we use 32-bit words for the Bitmap.
We built all our code under CUDA 11.4 and Linux Ubuntu
20.04 version. We run all experiments in a workstation with
an AMD Ryzen Threadripper 1950X CPU, 128GB of DDR4
memory, and an NVidia Titan V GPU. Unless specified other-
wise, each data point presented in all figures is the average
of 100 experimental runs with the same parameters.

5.2 Experimental Results

5.2.1 Performance ofGetPage. First, we evaluate the perfor-
mance of the two methods in getting a single fixed-size page.
Specifically, we develop a single GPU kernel whose only task
is to request a page. The equivalent in the Ouroboros system
is a kernel that requests 256B for each thread because 256B
is our page size. We launch the kernel with various numbers
of threads and various percentages of free pages.
Figure 7 shows the three metrics (kernel running time,

TAS, and WAS) measured from kernels as well as theoret-
ical values of TAS/WAS generated from our analyses. The
four columns represent scenarios with different free-page
percentages. In each scenario, we pre-set some pages as occu-
pied so that the percentage of free pages before starting the
kernels is 50%, 10%, 1%, and 0.5%, respectively. Results from
the first row shows that our CoRW outperforms Ouroboros
by more than an order of magnitude under most of the cases.
When there are less than 1% free pages, the advantage of
our method starts decreasing, but the CoRW still outper-
forms Ouroboros by a big margin. Note that the 1% free page
scenario is a really extreme case that is not expected to hap-
pen frequently in applications – it means that after serving
all the requests, there are 0 pages left. Ouroboros’ running
time increases with number of threads but our algorithm is
insensitive to that (except under 0.5% free page).

Results from the second and the third rows confirm the va-
lidity of our theoretical results (i.e., Equations (2) to (5)). First,
the measured TAS values match the theoretical results well.

8

Dynamic Memory Management in Massively Parallel Systems: A Case on GPUs ICS ’22, June 28–30, 2022, Virtual Event, USA

Figure 7: Performance of the kernel calling getPage under different numbers of parallel threads and percentage

of free pages. Percentages of free pages are measured at the start of each kernel.

The theoretical upper bound of WAS matches experimen-
tal results well even under 1% of free pages, indicating the
bounds are tight. The bound becomes loose as the percentage
of free page decreases to below 1% .

5.2.2 Performance of RW_malloc. Here we perform three ex-
perimentsmatching those in [38]. First, we compare RW_Malloc
and Ouroboros as the number of threads increases. Second,
we compare them as the allocation size increases. Third, we
compare them with allocation requests of mixed sizes. All
experiments have the same setup as in [38] except that allo-
cated pages are not immediately freed after the allocation.
This change affects Ouroboros significantly because it has
to keep extending its queues. However, this change reflects
real-world applications better than the original setup.

Figure 8 presents the total kernel time of RW_malloc and
Ouroboros when the number of threads scales. In allocation,
RW_malloc is faster than Ouroboros by up to 3 orders of
magnitude. The improvement is higher as the number of
thread grows, except for the 8192-byte allocation because
220 allocations of 8192 bytes deplete the memory pool and
bring our system to its worst scenario. Similarly, RW_malloc
performs better in freeing memory as the number of threads
grows and by up to an order of magnitude.
Figure 9 shows the total kernel running time when the

allocation size scales. Ouroboros’ performance decreases
by more than an order of magnitude when allocation size

increases from 4 to 8K bytes. RW_malloc is insensitive to
the change of allocation size.

Figure 10 presents the total kernel time in allocating mixed
sizes. This figure shows that RW_malloc outperformsOuroboros
in allocating a wide range of memory sizes. The improve-
ment reaches 2 orders of magnitude in the best cases where
there are the most number of parallel threads and most
free memory units in the system. The higher the concur-
rency is, the better RW_malloc performs than Ouroboros
due to Ouroboros’ linear scaling. RW_malloc’s performance
degrades as fewer memory units are available. However, it
is still much better than Ouroboros in its worst scenario
when there are almost no free pages. The only case where
Ouroboros wins is when it immediately frees memory just
allocated. By this, Ouroboros hits a sweet spot since it does
not need to allocate new chunks to extend the virtualized
queues. However, we believe this is an unrealistic scenario,
as buffers will normally be used before released.
For RW_malloc, we also evaluated memory utilization.

Same as in [38], we keep sending allocation requests until a
system reports an out-of-memory error. The memory utiliza-
tion is calculated as the fraction of total allocated amount in
the entire memory pool. We perform this experiment with
various unit sizes while maintaining the fairness between
Ouroboros and our system in terms of total memory and
maximum allocation size. According to Figure 11, memory
utilization of RW_malloc is always close to 100%. On con-
trary, Ouroboros performs well when allocation sizes are

9

ICS ’22, June 28–30, 2022, Virtual Event, USAMinh Pham, Hao Li, Yongke Yuan, Chengcheng Mou, Kandethody Ramachandran, Zichen Xu, and Yicheng Tu

Figure 8: Performance of RW_malloc and Ouroboros under different numbers of threads.

Figure 9: Performance of RW_malloc and Ouroboros

under different allocation sizes.

Figure 10: Performance of RW_malloc and Ouroboros

in allocating mixed sizes.

some power of two because these sizes fit perfectly into the
pages. The reason is that our system allocates large memory
chunks by aggregating small consecutive pages and thus has
a finer-granularity control over the memory space.

Figure 11: Memory efficiency of Ouroboros and

RW_Malloc

5.2.3 A Case Study: Hash Join on GPUs. We report experi-
mental results of real GPU programs with page acquisition
needs served by our getPage code. As compared to unit-tests,
this gives us a chance to evaluate our methods in real-world
applications. In particular, we focus the probing kernel of a
state-of-art GPU hash join code [27] as the foundation of this
case study. The kernel compares tuples of the corresponding
partitions of the two tables and outputs one tuple whenever
there is a match. We measure the end-to-end processing
time of all stages of the hash join code augmented by vari-
ous getPage implementations: Ouroboros, RW, RW-BM, and
CoRW. As a baseline, we also include the original code used
in [27] named Direct Output Buffer (DO). The DO design
assumes pages are never freed therefore getPage is done by
simply incrementing a global counter via atomic operations.

We first run the code under different input table sizes from
16K to 10M tuples while fixing the total page number to 128M.
By that, we achieve smaller percentage of free pages with
the increase of the data (table) size. Note that the data size is
roughly equal to the total number of threads. According to
Figure 12, by using Ouroboros, the join kernel runs slower
than others by a large margin. Ouroboros has the worst

10

Dynamic Memory Management in Massively Parallel Systems: A Case on GPUs ICS ’22, June 28–30, 2022, Virtual Event, USA

105 106 1070

10000

20000

30000

40000

50000

Pr
oc

es
sin

g
Ti

m
e

(m
s)

OuroBoros

105 106 107300
350
400
450
500
550
600
650
700 50% Free Pages

DO
RW
RW-BM
CoRW

105 106 107300
350
400
450
500
550
600
650
700 5% Free Pages

DO
RW
RW-BM
CoRW

Data Size

Figure 12: Total running time of a GPU hash join

program enhanced with different buffer management

mechanisms under different input table sizes

performance and DO is slightly better than RW since it only
involves a single atomicAdd operation. With the help of
bitmap implementation, RW-BM and CoRW alogorithms
outperformed DO in all cases.

6 RELATEDWORK

MemoryManagement onOS/DBMS:. Memorymanagement
on traditional (single-thread or low-concurrency) CPU-based
systems, let it be OS or DBMS, has been thoroughly studied.
On the OS side, Kilburn et al. [21] brought up the idea of pag-
ing in Atlas system. Page sgementation was firstly discussed
by Dennisó et al. [13]. Then Corbató et al. [12] supported
page segmentation in their MULTICS system, which is the
first one who achieved that. On the DBMS side, early work
can be traced back to Stonebraker [30] that discussed OS
supports in the context of a DBMS. Effelsberg et al. [14] dis-
cussed database buffer manager as a component of DBMS
and implemented it. Chou et al. [11] presented a DBMIN
algorithm to manage the buffer pool of an RDBMS. Chen et
al. [10] proposed a query execution feedback model to im-
prove DBMS buffer management. Brown et al. [7] introduced
the concept hit rate concavity and developed a goal-oriented
buffer allocation algorithm called Class Fencing.

MemoryManagement onGPUs: NVIDIA initially announced
its dynamic memory allocator for GPUs in 2010 [38]. It pro-
vides the usual malloc/free interface and can be called by
threads from a CUDA kernel. XMalloc [20] became the first
non-proprietary dynamic memory allocator for GPUs. Its
main contribution is the coalescing of allocation requests
on the SIMD width for faster queue processing. Allocations
are served from a heap that is segmented into blocks and
bookeeping information is stored in a linked-list. The linked-
list is a major bottleneck because a thread has to traverse
through the list of memory blocks when searching for a
free one. ScatterAlloc [29] addressed this bottleneck by scat-
tering the allocation requests across its memory regions. A
hash function is used to search for free regions. FDGMalloc
[34] (2014) presents a warp-level optimized approach that
aggregates all requests in a warp and chooses a leader thread

to traverse through a linked-list of free pages. Adinetz and
Pleiter [2] proposed Halloc in 2014; the main idea is to use
a deterministic hash function to traverse through memory
chunks and to use slab allocation to improve fragmentation.
Vinkler and Havran (2015) [32] proposed RegEff, which splits
the bookkeeping information into many linked-lists. During
allocation, a thread picks a linked-list and traverse to find
the first free chunk that is large enough for the allocation.

7 CONCLUSIONS AND FUTUREWORK

In this paper, we study the problem of runtime memory allo-
cation in highly parallel software systems, with a focus on
GPUs. The main idea of our design is to avoid maintaining
metadata that could become a major bottleneck in a high-
concurrency systems. Based on that philosophy, we propose
a memory allocation design based on a Random Walk (RW)
mechanism. We have proven mathematically that RW can
significantly outperform any queue-based solution under
the vast majority of scenarios. To address the RW’s limi-
tations in extreme cases when free buffer pages are very
rare, we propose two advanced techniques: the first one is
based on the storage of page information in a bitmap. This
is shown to improve the latency of RW by a factor of 32
or 64. The second one involves the sharing of free pages
among neighboring threads. We also present our solution
to the problem of allocating arbitrary bytes. Our experimen-
tal results are consistent with the mathematical analyses.
The results show that our solutions significantly outperform
the best known GPU memory allocator, Ouroboros, in both
allocation/deallocation performance and memory utilization.
Our idea provides a framework that can be extended to

accommodate a wide range of algorithms to gain better per-
formance under different scenarios. More aggressive random
walk approaches can be designed and analyzed.

REFERENCES

[1] Milton Abramowitz and Irene A Stegun. [n.d.]. Handbook of Math-
ematical Functions with Formulas, Graphs, and Mathematical Tables.
New York: Dover Publications, 16,806,886.

[2] Andrew V Adinetz and Dirk Pleiter. 2014. Halloc: a high-throughput
dynamic memory allocator for GPGPU architectures. In GPU Technol-
ogy Conference (GTC), Vol. 152.

[3] Yehia Arafa, Abdel-Hameed Badawy, Gopinath Chennupati, Nan-
dakishore Santhi, and Stephan Eidenbenz. 2019. Low Over-
head Instruction Latency Characterization for NVIDIA GPGPUs.
arXiv:1905.08778 [cs.DC]

[4] Iya Arefyeva, David Broneske, Gabriel Campero, Marcus Pinnecke, and
Gunter Saake. 2018. Memorymanagement strategies in CPU/GPU data-
base systems: A survey. In International Conference: Beyond Databases,
Architectures and Structures. Springer, 128–142.

[5] Toufik Baroudi, Vincent Loechner, and Rachid Seghir. 2020. Static
versus Dynamic Memory Allocation: a Comparison for Linear Algebra
Kernels. In IMPACT 2020, in conjunction with HiPEAC 2020.

11

https://arxiv.org/abs/1905.08778

ICS ’22, June 28–30, 2022, Virtual Event, USAMinh Pham, Hao Li, Yongke Yuan, Chengcheng Mou, Kandethody Ramachandran, Zichen Xu, and Yicheng Tu

[6] Emery D Berger, Kathryn S McKinley, Robert D Blumofe, and Paul R
Wilson. 2000. Hoard: A scalable memory allocator for multithreaded
applications. ACM Sigplan Notices 35, 11 (2000), 117–128.

[7] Kurt P Brown, Michael J Carey, and Miron Livny. 1996. Goal-oriented
buffer management revisited. ACM SIGMOD Record 25, 2 (1996), 353–
364.

[8] Tomislav Burić and Neven Elezović. 2013. Approximants of the Euler–
Mascheroni constant and harmonic numbers. Appl. Math. Comput. 222
(2013), 604–611.

[9] Federico Busato, Oded Green, Nicola Bombieri, and David A Bader.
2018. Hornet: An efficient data structure for dynamic sparse graphs and
matrices on gpus. In 2018 IEEE High Performance extreme Computing
Conference (HPEC). IEEE, 1–7.

[10] ChungMin Melvin Chen and Nick Roussopoulos. 1998. Adaptive data-
base buffer allocation using query feedback. Technical Report.

[11] Hong-Tai Chou and David J DeWitt. 1986. An evaluation of buffer
management strategies for relational database systems. Algorithmica
1, 1-4 (1986), 311–336.

[12] Fernando J Corbató and Victor A Vyssotsky. 1965. Introduction and
overview of the Multics system. In Proceedings of the November 30–
December 1, 1965, fall joint computer conference, part I. 185–196.

[13] Jack B Dennis. 1965. Segmentation and the design of multiprogrammed
computer systems. Journal of the ACM (JACM) 12, 4 (1965), 589–602.

[14] Wolfgang Effelsberg and Theo Haerder. 1984. Principles of database
buffer management. ACM Transactions on Database Systems (TODS) 9,
4 (1984), 560–595.

[15] Babak Falsafi, Rachid Guerraoui, Javier Picorel, and Vasileios Trigo-
nakis. 2016. Unlocking energy. In 2016 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 16). 393–406.

[16] Minquan Fang, Jianbin Fang, Weimin Zhang, Haifang Zhou, Jianxing
Liao, and Yuangang Wang. 2018. Benchmarking the GPU memory at
the warp level. Parallel Comput. 71 (2018), 23–41.

[17] Wolfram Gloger. 2006. Wolfram Gloger’s malloc homepage.
[18] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K Govindaraju,

Qiong Luo, and Pedro V Sander. 2009. Relational query coprocessing
on graphics processors. ACM Transactions on Database Systems (TODS)
34, 4 (2009), 1–39.

[19] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju, Qiong
Luo, and Pedro Sander. 2008. Relational Joins on Graphics Processors.
In Proceedings of the 2008 ACM SIGMOD International Conference on
Management of Data (Vancouver, Canada) (SIGMOD ’08). ACM, New
York, NY, USA, 511–524. https://doi.org/10.1145/1376616.1376670

[20] Xiaohuang Huang, Christopher I Rodrigues, Stephen Jones, Ian Buck,
and Wen-mei Hwu. 2010. Xmalloc: A scalable lock-free dynamic mem-
ory allocator for many-core machines. In 2010 10th IEEE International
Conference on Computer and Information Technology. IEEE, 1134–1139.

[21] Tom Kilburn, David BG Edwards, Michael J Lanigan, and Frank H
Sumner. 1962. One-level storage system. IRE Transactions on Electronic
Computers 2 (1962), 223–235.

[22] Donald E Knuth. 1993. Johann Faulhaber and sums of powers. Math.
Comp. 61, 203 (1993), 277–294.

[23] Tongping Liu, Charlie Curtsinger, and Emery D Berger. 2011. Dthreads:
efficient deterministic multithreading. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles. 327–336.

[24] NVidia. 2018. CUDA C Programming Guide. Retrieved Febrarury 24,
2018 from https://docs.nvidia.com/cuda/cuda-c-programming-guide/

[25] Johns Paul, Jiong He, and Bingsheng He. 2016. GPL: A GPU-based
pipelined query processing engine. In Proceedings of the 2016 Interna-
tional Conference on Management of Data. ACM, 1935–1950.

[26] Igor Pletnev, Andrey Erin, Alan McNaught, Kirill Blinov, Dmitrii
Tchekhovskoi, and Steve Heller. 2012. InChIKey collision resistance:
an experimental testing. Journal of cheminformatics 4, 1 (2012), 1–9.

[27] Ran Rui and Yi-Cheng Tu. 2017. Fast Equi-Join Algorithms on GPUs:
Design and Implementation. In Proceedings of the 29th International
Conference on Scientific and Statistical Database Management (Chicago,
IL, USA) (SSDBM ’17). ACM, New York, NY, USA, Article 17, 12 pages.
https://doi.org/10.1145/3085504.3085521

[28] Matthias Springer and Hidehiko Masuhara. 2018. DynaSOAr: a parallel
memory allocator for object-oriented programming on GPUs with
efficient memory access. arXiv preprint arXiv:1810.11765 (2018).

[29] Markus Steinberger, Michael Kenzel, Bernhard Kainz, and Dieter
Schmalstieg. 2012. ScatterAlloc: Massively parallel dynamic mem-
ory allocation for the GPU. In 2012 Innovative Parallel Computing
(InPar). IEEE, 1–10.

[30] Michael Stonebraker. 1981. Operating system support for database
management. Commun. ACM 24, 7 (1981), 412–418.

[31] RD Team et al. [n.d.]. RAPIDS: Collection of Libraries for End to End
GPU Data Science, 2018.

[32] Marek Vinkler and Vlastimil Havran. 2015. Register efficient dynamic
memory allocator for GPUs. In Computer Graphics Forum, Vol. 34.
Wiley Online Library, 143–154.

[33] Kaibo Wang, Kai Zhang, Yuan Yuan, Siyuan Ma, Rubao Lee, Xiaoning
Ding, and Xiaodong Zhang. 2014. Concurrent analytical query pro-
cessing with GPUs. Proceedings of the VLDB Endowment 7, 11 (2014),
1011–1022.

[34] Sven Widmer, Dominik Wodniok, Nicolas Weber, and Michael Goesele.
2013. Fast dynamic memory allocator for massively parallel architec-
tures. In Proceedings of the 6th workshop on general purpose processor
using graphics processing units. 120–126.

[35] Paul R Wilson, Mark S Johnstone, Michael Neely, and David Boles.
1995. Dynamic storage allocation: A survey and critical review. In
International Workshop on Memory Management. Springer, 1–116.

[36] MartinWinter, Daniel Mlakar, Mathias Parger, andMarkus Steinberger.
2020. Ouroboros: virtualized queues for dynamicmemorymanagement
on GPUs. In Proceedings of the 34th ACM International Conference on
Supercomputing. 1–12.

[37] Martin Winter, Daniel Mlakar, Rhaleb Zayer, Hans-Peter Seidel, and
Markus Steinberger. 2018. faimGraph: high performance management
of fully-dynamic graphs under tight memory constraints on the GPU.
In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 754–766.

[38] MartinWinter, Mathias Parger, Daniel Mlakar, andMarkus Steinberger.
2021. Are dynamic memory managers on GPUs slow? a survey and
benchmarks. In Proceedings of the 26th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. 219–233.

[39] Haicheng Wu, Gregory Diamos, Tim Sheard, Molham Aref, Sean Bax-
ter, Michael Garland, and Sudhakar Yalamanchili. 2014. Red fox: An
execution environment for relational query processing on gpus. In
Proceedings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization. ACM, 44.

[40] Yuan Yuan, Rubao Lee, and Xiaodong Zhang. 2013. The Yin and Yang
of processing data warehousing queries on GPU devices. Proceedings
of the VLDB Endowment 6, 10 (2013), 817–828.

[41] Shuhao Zhang, Jiong He, Bingsheng He, and Mian Lu. 2013. Omnidb:
Towards portable and efficient query processing on parallel cpu/gpu
architectures. Proceedings of the VLDB Endowment 6, 12 (2013), 1374–
1377.

12

https://doi.org/10.1145/1376616.1376670
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://doi.org/10.1145/3085504.3085521

	Abstract
	1 Introduction
	2 Background
	3 Parallel Memory Allocation
	3.1 Core Idea
	3.2 Performance Analysis

	4 Extensions
	4.1 A Bitmap of Used Bits
	4.2 Collaborative Random Walk Algorithm
	4.3 Allocating Multiple Consecutive Pages

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Related Work
	7 Conclusions and Future Work
	References

