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Pilot projects in power networks conducted across continents have established the benefits of dynamic
pricing by inducing increased demand response. However, a key hurdle in the growth of demand
response is the lack of widespread availability of advanced metering infrastructure, which has stymied
the adoption of dynamic pricing. We believe that this hurdle will be partially addressed by the growth of
electric vehicles (EVs), as smart and connected EV parking lots will be a provider of demand response.
We develop a two-layer optimization model that simultaneously determines dynamic pricing policy for
the system operator and demand response strategies f[or the EV parking lots. The model minimizes the
cost to consumers, while ensuring the system operator’s revenue neutral status and addressing real-time
price uncertainties. A variant of the 5-bus PJM network is used to demonstrate model implementation.
Numerical results show that for a low to moderate price spike scenario, dynamic pricing with demand
response from EVs alone can lower the daily average consumer cost of 1.42% compared to the cost of flat
pricing. A cost reduction of 6.5% is achieved when price spikes are relatively high. Computational
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challenges of implementing our model for real networks are discussed in the concluding remarks.
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1. Introduction

It was recommended early in the new millennium that power
networks will benefit significantly from dynamic pricing and de-
mand response [1]. Some of the recent review papers that futher
emphasize this are [2—4]. Till date, dynamic pricing policies have
remained limited to variants of time of use (TOU), critical peak
pricing (CPP), and ex-post real time pricing (RTP). The lack of
availability of a pure form of dynamic pricing, where binding prices
are offered to consumers just ahead of power usage, has limited the
incentives for demand response to grow. As a result, historically,
hourly demand for electricity has remained highly uneven and has
continued to cause significant price spikes. It is estimated that
networks maintain 10—15% of the average demand as reserve ca-
pacity to deal with uneven load distribution. Also, 10% of the cost of
electricity is spent in 1% of the operating times due to price spikes
[5,6]. For example, in the month of May 2018, the price of electricity
in the ERCOT market in the US. spiked from the average level of
$25-360/MWh to $750-$1600/MWh. During the same period the
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price in the NYISO market in the U.S. experienced price fluctuations
in the range of -$600/MWh to $1000/MWh [7]. The woes of power
networks may be exacerbated in coming years with the explosion
of EVs and resulting increase in energy demand as well as change in
daily load patterns. It is estimated that the number of EVs will grow
to 7.3 million by 2023 in the U.S. [8]. Considering an average battery
capacity of 70 kWh, charging of these batteries even once a day may
consume up to an additional 500,000 MWh. Unless managed well,
this consumption growth could significantly alter the current daily
load profile and further increase price spikes. We recognize, how-
ever, that the growth of EVs will also bring an unique opportunity
forincreased demand response. Large number of EVs will be parked
in smart, connected, and aggregator managed parking lots. While
parked, these EVs will be charged optimally and thus will likely
shift EV demand to off-peak periods and reduce stress on the
network.

In this paper we present a two-layer optimization model to
develop policies for implementing pure dynamic pricing of elec-
tricity and demand response using EVs. The top-layer of our model
addresses the day-ahead (DA) market operations using a two-stage
stochastic model that considers different demand patterns and
uncertain real-time (RT) prices. The RT market operations, using DA
solutions as an input, are considered in the bottom-layer and are
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formulated as a bilevel model which is solved for each hour of the
day, just before dispatch. The upper-level of the bilevel model
solves for dynamic prices and the lower-level determines the de-
mand response action (optimal charging).

The important features of our two-layer model are the
following: 1) the top-layer model considers power network con-
figurations including congestion, 2) the bilevel model uses a robust
optimization framework to accommodate RT price uncertainties, 3)
the upper-level of the bilevel model uses a specific constraint to
manage revenue neutrality of the system operator (SO), 4) a
mixture of two probability distributions is used to generate price
spikes, their magnitude and time of occurrence and 5) a granular
parking lot model with a large volume of EVs comprising different
makes, models, battery capacities, and charging needs. As regards
solution of the model, we first reformulate the bilevel model into a
single level mathematical program with equilibrium constraints
(MPEC) model. We then linearize the MPEC model using the strong
duality principle. The resulting optimization model is a single level
mixed integer linear programming (MILP), which is solved using a
conventional approach. In the rest of this section, a short review of
literature on dynamic pricing and demand response is presented.

A pure form of dynamic pricing, where binding prices are
declared just ahead of consumption in small intervals (say, an hour
or less), is often referred to in the literature as real time pricing, RTP.
However, the nomenclature of dynamic pricing and RTP is used
widely in the literature to include many other forms of time varying
pricing strategies. Such strategies include: block rate tariffs, sea-
sonal tariffs, TOU, superpeak TOU, CPP, variable peak pricing (VPP),
and RTP; see Ref. [2] for definitions of these pricing schemes.
Henceforth, in this paper, we will only consider the pure form of
dynamic pricing that offers binding prices ahead of consumption.
Implementation of this dynamic pricing requires availability of
advanced metering infrastructure (AMI). Literature shows that
availability of smart technology increases price elasticity and grid
efficiency [9—11]. Beneficial impacts of dynamic pricing have been
explored through many pilot projects in recent years. The survey
presented in Ref. [12] examined seventy-four dynamic pricing ex-
periments across three continents during the last decade. The re-
sults show that increase in price peaks offers better benefits of load
balancing from dynamic pricing. It is shown in Ref. [13] that dy-
namic pricing can achieve a peak demand reduction of 10—14%,
customer cost reduction of 2—5%, and a social welfare increase by
$141-%$403 million in a year. A study conducted in California [14]
found that most consumers will benefit from dynamic pricing, and
also that low income consumers will not be impacted negatively, a
concern that was expressed earlier. Even with well documented
benefits of dynamic pricing, its implementation in power network
still remains a challenge. This is due to the lack of adoption of AMI,
and, to our knowledge, need for models that can yield appropriate
dynamic pricing strategies for networks affected by price volatility.

Though broad availability of AMI for consumers to engage in
demand response remains a capital investment challenge, a sig-
nificant number of papers have been presented to the literature
that address demand response by residential thermostatic loads
and distributed generation. In Ref. [15], a two-stage stochastic
optimization model is developed for the aggregators to optimally
control flexible thermostatic loads (e.g., water and space heaters)
and buy back from prosumers' storage to trade in spot markets to
minimize overall cost. The same authors in Ref. [16] considered a
multi-stage stochastic modeling approach for the aggregators to
minimize prosumers’ cost by bidding sequentially in the option
market, DA market, and near RT market. In the model presented in
Ref. [17], the aggregators first determine the DA quantity consid-
ering EV, thermostatic loads, shiftable load, and renewable gener-
ation. Thereafter, a model predictive control approach is used to

adjust the flexible loads to minimize the net cost of buying and
selling energy in the RT market. It is claimed that this strategy re-
duces the net cost of aggregators by 14% compared with operation
with no DR. A bi-objective optimization model in Ref. [ 18] develops
a tradeoff between user comfort and cost of energy consumption in
smart buildings. It is shown in Ref. [19] that a 17% energy cost
saving can be attained through DR in residential microgrids
equipped with photovoltaic systems, flexible loads, and electric
vehicles. The savings can be further increased by 6% if battery
storage is available. A recent paper in Ref. [20] obtains simultaneous
strategies for dynamic pricing by SO and demand response by load
aggregators using a data driven iterative learning approach.

We believe that the impending growth of EVs will bring new
opportunities for power networks as the aggregator managed EV
parking lots will supplement the existing modes of demand
response. The technical and economical feasibility of incorporating
EV aggregator as a resource to the network is addressed in Ref. [21].
A conceptual regulatory framework and a business model to inte-
grate EVs in the network and in turn support the power system
operation is proposed in Ref. [22]. In Ref. [23], the authors propose
an aggregated EV charging schedule in coordination with the SO. It
is claimed that such charging schedules will enhance the grid ef-
ficiency and security, and thus allow significant EV penetration
without a need for grid capacity expansion. Optimal and risk averse
bidding strategies for EV aggregators under the constraints of
market uncertainty, EV owners' behavior, and aggregators' profit
volatility are presented in Refs. [24—26]. In Ref. [27], a stochastic
programming methodology is developed with an objective of
maximizing aggregator profit by charging the EVs on low price
periods under time-varying market prices. They show that if the
uncertainty in the number of vehicles in the parking lots is ignored,
the aggregator profit is overestimated by 23.8%. A stochastic model
from the SO's perspective in Ref. [28] incorporates demand
response offered by the EVs. The model shows that SO can mini-
mize the operation cost by optimally scheduling conventional
generators, and the aggregators can minimize the electricity pay-
ment through DR participation. The objective of minimizing the
cost of EV parking lot operation was approached via a cooperative
game model in Ref. [29] and a non-cooperative game model in
Ref. [30]. The cooperative game model reduced the cost through
negotiation with the utility and the non-cooperative model used a
price-driven EV charging model. A decentralized pricing scheme is
proposed in Ref. [31], where SO sends the price and quantity in-
formation to the load aggregator, and both parties iteratively
reoptimize the system dispatch and EV charging. A bilevel model is
proposed in Ref. [32] that captures the interactions between the SO
and parking lots. The model determines the scheduled energy for
the parking lots based on the price offered by SO. Results show that
the SO could achieve a considerable reduction of 8—9% of its total
daily operation cost through parking lots' participation in the
reserve market. In another bilevel model [33], the interaction be-
tween an EV aggregator and a parking lot owner is examined.

We make two key observations from the literature reviewed
above. First, pure dynamic pricing has long been recommended as
an enabler for demand response. Many pilot projects in the U.S. and
Europe have demonstrated the expected benefits of pure form of
dynamic pricing. However, there is a gap in the literature for
model-based support on how to develop strategies for dynamic
pricing for different network structure and composition. The sec-
ond observation is that though models for various aspects of EVs
have been presented to the literature, to our knowledge, a model
for EV integration under dynamic pricing has not yet been made
openly available. Our paper addresses both of the observations.

The remaining paper is organized as follows. Section 2 describes
the modeling approach. The two-layer model is presented in
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Section 3. In Section 4, the model is implemented on a sample 5-
bus PJM network with actual load data from PJM zones. Perfor-
mance comparison of dynamic pricing and demand response
strategies with other existing and adhoc policies is also given in
Section 4. Concluding remarks are contained in Section 5.

2. Modeling approach

Our two-layer modeling approach is depicted in Fig. 1. Before
discussing the model elements, we state some of the modeling
considerations and limitations. The financial settlement occurs in
two stages: in the DA and the RT markets. The SO determines the
dynamic prices by considering the possible outcomes of both
markets. Strategic aggregators manage the loads in the network
that include fixed residential and business loads, and schedulable
EV loads in large parking lots. These parking lots host a variety of
vehicles with different battery types at different times of the day
and for different periods of stay. EVs arrive and depart with
different charge levels. Depending on the hourly price variation, the
aggregators develop their demand response strategies by optimally
deciding charging schedules for the EVs. We assume the time in-
terval to be an hour. One limitation of our model is that the
aggregators neither inject power back from the vehicles to the grid
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Fig. 1. Model components and their interactions.

(V2G) nor engage in any other forms of temporal arbitrage for peer-
to-peer trading. Under present electricity pricing policies and some
of the prevailing battery technologies (e.g., lead-acid, NiMH), V2G
operation is still considered not cost effective [34]. However,
evolving battery technologies, like lithium ion, can withstand
charge cycling and support V2G.

The top-layer determines the DA quantities and prices for all
hours of the day using DA generators’ supply bids, historical de-
mand patterns, and the corresponding RT prices. The model uses a
network constrained least-cost dispatch principle for market
clearing and is formulated as a two-stage stochastic program. The
first stage determines the energy procured in the DA market, and
the second stage decides the RT quantities. The RT prices are sub-
jected to price spikes and are considered exogenous. The solution of
the two-stage program yields scheduled DA hourly quantities and
locational marginal prices (LMPs). These DA quantity-price pairs
are sent to the bottom-layer model as input.

The bottom-layer is a bilevel model and is solved at the begin-
ning of every hour. In the upper-level, the SO determines the dy-
namic prices for the hour using the lower-level problem as
constraint. It minimizes the total cost of satisfying demands for the
current and the future hours of the day, while meeting the key
constraint of 50 being revenue neutral. The RT prices are assumed
to be known for the current hour, while the future hour RT prices
are considered unknown and are modeled as uncertainty sets using
a robust approach. The lower-level represents multiple aggregators
(one for each load node) and obtains the optimal demand response
actions. This is achieved by considering dynamic prices for the
current hour and the DA prices as the estimates for the future
hours. In what follows, we present a general framework for the
two-layer model before presenting the complete model in the next
section.

For the top-layer model, let c¥ denote the supply offer of the

generators and A" denote the real-time prices for demand scenario
w. The decision variables for the energy procured in the DA and RT
markets are denoted by EP* and ERT, respectively. The probability
distribution of each demand scenario is denoted by .. The first
constraint represents the first stage DA market operation and
considers power balance, generator output, and transmission line
limits. The dual variable (DA price) corresponding to the first stage
constraint is denoted by ™. The second constraint ensures the
power balance in the RT market for all realizations w of demand.

. ~DA ~DA
The solution of the top-layer denoted by E and 4 are sent to the
bottom-layer. For simplicity, the index for time intervals of the day
is omitted from the general formulation.

min NEPA 37, A0 ERT

EET S
s.t.
Top — layerq ATEDA - p (lm) (1)
PuEP 1 quELT > €, VoeQ
EPA = 0,ERT > 0. VoeQ
, DA SDA
min F(xyr.—3[E 4 ),
s.L
Bottom - layer G(x Vi, ,yk‘E ) <0, 2)
yi=argmmﬁ(x,-,y,-|.1 )_. Vie1,-k
&ilx;,yi) <0. Vi=1

In the bottom-layer model, x&R* and y;=Rr are the decision
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variables representing hourly dynamic prices (upper-level) and
each aggregator's consumption (lower-level), respectively, where k
denotes the number of aggregators (followers) in the network. The
SO's objective function in the upper level, F: R2k — R, is to optimally
procure energy in DA and RT markets. The objective function of the
ith aggregator at the lower level, f;: B2 —R, aims to minimize the
total cost of energy consumption for the given dynamic price x;. The
upper and lower level constraints are denoted as G(-) and g;(+),
respectively.

The uniqueness of the above bilevel model is that it has multiple
followers at the lower-level, and each follower's decision variable
and the associated strategy space are independent of those of the
other followers. The bilevel model can be reformulated as a single
level MPEC as in Refs. [35,36] and are used in our solution approach.
The lower-level model is linear and convex, and is reformulated as
Karush-Kuhn-Tucker (KKT) optimality conditions (referred to as
mathematical program with equilibrium constraint, MPEC). Big-M
method and strong duality principle are used to linearize the
model and thus obtain the equivalent single level MILP optimiza-
tion model that can be solved using conventional approaches.

3. The model

In this section we present the details of the top and bottom-
layer optimization models. As stated earlier, the top-layer is a
two-stage stochastic model, and the bottom-layer is a bilevel robust
optimization model.

3.1. Top-layer model

The top-layer concerns the DA market, where the SO decides the
optimal DA scheduled quantities. The SO considers historical sce-
narios of demand patterns and corresponding RT prices at each
node, together with the generator DA bids to determine the optimal
DA schedule quantities. This is accomplished via a two-stage sto-
chastic model where the first stage decides the DA quantities and
the second stage obtains the RT quantities for all possible scenarios.
The objective function minimizes the total expected cost of energy
purchased in the DA and RT markets for all load nodes (N, ©N) and
for all hours T. The term C?"’(-j denotes the cost function of
participating generator g& N¢ in the DA market. The decision var-
iable for the generator output in the DA market is denoted by Pg.
The additional quantities purchased in the RT market in demand

scenario w (with probability w,) is denoted by P‘;r‘m. If the DA
quantity exceeds demand in scenario w, then the excess amount,

denoted by P‘;t“'" , is assumed to be sold in the RT market. The RT
price at node n and time t under demand scenario w is denoted by
Py
it

Constraint (3) ensures the first stage network power balance. Let
Ng denote the subset of the generators that are at node n, and By
denote the set of nodes in the network that are directly connected
to node n. For me By, let by, denote the susceptance of the line
between the nodes n and m, and d, denote the voltage angle (in
radians) at node n and time . The term ES? represents the sched-
uled DA quantity for the load node n and time t. Constraints (4) and
(5) represent transmission line flow limits and generator output
limits, respectively; Fnm represents the maximum line flow in MW,
and P, (Py) are lower (upper) limit of generator real power output
in MW. Constraint (6) is used to designate node 1 as a reference bus
(or slack bus) in the network. Constraint (7) ensures all other node
buses are within the voltage angle limits.

T
min} " | 3 A Py) > > ART (P;Jim P;J{__n. )

=1 |g=Ng well neN geNL

5.t
First stage constraints

Z PP.I t Z bnmlﬁm Esm:]

EPA—0, vneN,¥teT (3)

2eN mMeEBy
an < bnm[ﬁn[ (5;1-1[] {an, VmFBn m-=n, VHFN,VIFT
(4)
P, <Py <Py, Vg&Ng VEET (5)
5,,=0, VteT (6)
T< by <m VYneENVIET (7)
Second stage constraints
(P~ PE™ )+ > bom[B5 G O+ ]
2N, meBR,
(ER“* —EN“* )=0, VneN,VoeQ vieT (8)
Fm—n < bnm [5:‘;‘ 5:’_[1 < an, VmFBn
m<=n,VneN,VoeQ VieT (9)
P, < Py + P;Jf" P;JE"" < Py, VgeEN;, YweEQ VieT
(10)
EDA Eﬁ?‘“”ﬁl Eﬂ“‘m = DY, VneN, VoeQ, vieT
(11)
EPA ~ minD¥,, vneN, VieT (12)
el
EDA < 216%0‘;[, YneN, VieT (13)
81, =0, Ve VieT (14)
< by <, VheEN, VoeQ VisT (15)

A A DA RT.w A’ A -
Py, P Pyr L Eng  Eny rE:;r =0

The remaining constraints are for the second stage model. Po-
wer balance for all RT demand realizations is ensured by constraint

(8), where Eﬁ:"""&' and Eﬁ}— w8 are positive and negative demand
deviations from the DA scheduled quantities. Constraint (9) and
(10) are line flow and generator limits for all demand realizations.
Constraint (11) ensures that total energy scheduled in the DA and
RT markets matches the realized demand D5,,. To ensure stable load
scheduling, we have added constraints (12) and (13) such that the
energy scheduled in the DA market is within the bounds of the
realized demand. Constraints (14) and (15) represent the power
angles for reference node and all other nodes, respectively. The dual
variables of first stage constraints (3)-(5) can be decomposed into
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marginal cost of energy at reference bus, marginal cost of power
network losses, and cost of congestion, respectively. Using these

dual values, the DA LMPs (denotes as A24) for all nodes and for all
time periods are calculated. These LMPs and their associated
quantities (E24) are used as inputs in the bottom-layer model.
Before presenting the bottom-layer model, we discuss how the RT

prices (Aﬂ"”] are modeled using the approach in Ref. [37].

For each scenario «, we solve the DCOPF model to get the market
clearing prices (MCPs) at all nodes. We then express the RT prices as
).E{"" = MCP%[1+ €|, where e = Mye; + Msey, and &, and &5 are
random variables, values of which are drawn from normal and
Cauchy distributions with parameters (u.7;) and (u;, o2),
respectively; (M;,M;) is a bivariate random variable that takes
values of (0,1) with probability p; and (1,0) with probability (1 — p;),
where p: is the probability of occurrence of price spikes. The normal
random variable £; contributes to the usual variability in the RT
prices during off-peak periods, whereas the Cauchy random vari-
able &5, chosen with probability ps, generates the price spikes. Note
that, the term  and their related terms are also depend on node n
and time t. For notation simplicity, the indexes are dropped.

3.2. Bottom-layer model

The bottom-layer is formulated as a bilevel model that is solved
at the beginning of every hour. At the upper level, the SO determine
appropriate dynamic prices at each load node for each hour, and at
the lower level, the aggregators determine optimal consumption
levels.

3.2.1. Upper-level model

The SO's goal in the model presented below is two-fold: 1) to
minimize the total cost of satisfying the demand in the current and
all future hours of the day, and 2) to ensure that the dynamic prices
for the current hour are selected such that there is no significant
revenue loss or surplus. Recall that the aggregators pay binding
dynamic prices for the current hour, which may be different from
the DA or RT prices. A robust approach is used to assess future RT
prices.

T
min 3 lﬁsﬁf T (e R 1Y (2800

neN; I>7

1 ~RT . r
} i(iﬁf P AR (Em EE;“)) | TRTZRT znﬁf],

[>T

s.L

TrEny — ADAEDA :«ﬁ;‘"{ﬁm Eﬁ'ﬁ) =0, VneN, (16)
RT | RT - | (3RT kT

Zi v =5 (e M )ym,  VRENLVE>T (17)
Yot < (Ene — Epf) <ym,  VRNENLVE>T (18)

RT . RT .
TnrsZn Mt ¥ne = 0.

The objective function has two parts, cost of the current hour +
and the cost of all future hours t = 7. For all load nodes (N, ), the first
part accounts for the current hour cost of energy purchased in the
DA and RT markets, where the RT price AXT — P41 4 ¢] is the
known for the current hour and E,; is the actual consumption level

(decided at the lower-level model).
For the future hours (t > 7), since the RT prices are uncertain, the
cost is assessed via a robust model similar to that presented in

Refs. [38,39]. Let Fi: iﬁﬂ denote the RT price confidence bounds,

which are obtained from simulated sample values drawn from

APA1 + €. Using a robust parameters I'f!, the SO minimizes the
worst-case total cost. The parameter 115;' can take any value within
the interval [0, |T — 7|]. When it is 0, then the risk of RT price un-
certainty is ignored in all future hours, and hence the RT prices are

taken as the mean values of the confidence bounds. When l‘ﬁT =
T-— :r‘, in all future hours most conservative decisions are

considered, the RT prices are taken as: the upper bounds when
additional quantities are purchased in the RT market, and the lower
bounds when the DA quantities are sold in the RT market. The
terms ZX' and 7R are the robust model decision variables. The
constraint (16) determines the dynamic prices m,, for the current
hour 7 such that there is no revenue shortfallfsurplus for the SO.
Constraint (17) and (18) are from the strong duality theory of robust
optimization model.

3.2.2. Lower-level model

This model is used by each aggregator (one for each load node
ne N ) to optimally plan consumption among the current and the
remaining hours of a day. It uses the binding dynamic prices for the
current hour, decided at the upper level model. For the remaining
hours, the model uses the DA prices as estimates of dynamic prices.
As noted earlier, only the parking lot portion of the total load is
scheduled by the aggregator. Each parking lot is considered to host
a large number of EVs, that flow in and out at different hours of the
day, and have different charging needs.

T
minmnrEns + > At Ent

=711
s.t.
i 19)
En = PRAt+ Y PRAL (py) V=T (
p-1
0<Py <Py, (Wh.Eh) VE>7.VpeNy (20)
0 < SOCE, < S0Ch, (A7)  Vt=r1,VpeNy (21)

SOCh, :SOOE[: 1 FRPRAL Y o QR Th,

keCh
S BQh T (V)  VicTpeNy  (22)
keC
SOCh, > Z Z “ﬁkQﬂkTﬂhk
h=tkeC’
~P : I

Z Z aﬁkQﬁanhk' (vh) Vt>7,peNh
h=tkeC

(23)

Ent,P2,.SOCP, = 0

The first term of the objective function denotes the energy
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consumption schedule for the current interval, and the second term
accounts for the remaining hours. The constraint (19) ensures that
the total load consumed is the sum of power consumed by fixed
residential and business loads (Py,) and the parking lots (Ph,),
managed by the aggregator at node n in the time interval At, where
Nﬂ’ is the number of parking lots at node n. Constraint (20) repre-
sents the maximum charging capacity of a parking lot, and
constraint (21) ensures that the aggregate state of charge of a
parking lot at any time t is not higher than the total capacity of the

EVs present in the parking lot; the term SOCfH is computed as

=p .
Zhngk«:cﬁ Qﬁﬂﬂhk — et ke (a4 D-ﬁan.hkf where (] is the
maximum number of EVs in parking lot p and at node n, QF, is the

battery capacity of vehicle k, and Tﬁtk and T"ztk are binary variables

for the time of arrival and the time of departure of the k' EV. For
instance, T, value is 1, if kth EV arrived at time t and 0 otherwise.
Constraint (22) represents the state of charge at any time t, which is
equal to the sum of: state of charge in the previous period (t — 1),
power drawn from the grid for the parking lot in the interval At,
and total state of charge of the vehicles arrived at time t, minus the
total charge of the vehicles departed at time t. The coefficients 77,
aﬁk and ﬁﬁk denote the conversion efficiency, percentage of charge
at the time of arrival and departure, respectively. Constraint (23)
ensures that the state of charge of the parking lot at any time t is
at least equal to the sum of the initial state of charge of all parked
EVs in the parking lot. The decision variables of the aggregator in
this model are Ey. PR, and SOCF, for all t > 7. The dual variables
associated with the constraints are given within the parentheses.
We next formulate the KKT condition for the model. See Appendix
A for the details.

3.2.3. Linearization of the upper-level model

The upper-level model has a nonlinear term mp, Egy in (16). This
nonlinearity is overcome by applying the strong duality principle
on the lower-level model (see Section 3.2.2) as follows,

T N .
TnrEnr 4 Z A Eny = Z PPl Z Pﬂtﬁﬁt ! SOCﬁ[vﬂ[

=71 (= p=1
Do QnThe D B Qn Tou | Vi
kedh ked,
E Z aﬁRQﬂkTﬂﬁk Z Z “ﬁkQﬂk Tghk Tﬁl
h=tkeCt, h<tkec?h

! SOCﬁ(T 1]#“’%-
(24)

Note from the above that, for the strong duality components
corresponding to ¥ (from (22) in Section 3.2.2), we have added an

additional term SOC ﬁﬁ 1)Vh- at the end of the equation. This is to

account for the time t = r when E.'J.’)Cﬁ{r 1 will be a constant (which

otherwise is a variable for all = 7). Also, at 7 = 1, SOC? is zero.

n(r—1)

3.2.4. The single level linear model

The following formulation represents the transformed bi-level
model into a single-level linearized MPEC model, where
constraint (16) is linearized using (24).

T
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(25)
Constraints (17) - (23) and (A.1) - (A.10),

Wm—;zﬁT‘ ﬂﬁ;rayﬂh Eh[: Pﬂpsocg{ s Pat s F-'D[?ng VD

n _m“’g:ﬁ'm =0,

yb, — free variable.

4. Numerical results

We constructed a modified PJM 5-bus network in which the two
load nodes are managed by aggregators. The loads consist of resi-
dential and business loads as well as large EV parking lots. The
residential and business loads are assumed fixed, and only the
parking lot loads are managed for demand response. We first give
the network parameters, and then discuss implementation of our
model on the network. Thereafter, we present a comparison of the
total cost of meeting demands for policies derived from our model
with other existing practices. The numerical experiments are car-
ried out using Julia with Gurobi 7.0.1 solver on an Intel core i7
processor with 16 GB RAM.

4.1. Modified PIJM 5-bus network

The network comprises three generating nodes with three
generators in each, two load nodes, and six transmission lines
(Fig. 2). Generator cost functions are quadratic and are obtained
from Ref. [37]. The maximum limit of each generator is considered
to be 800 MW. Demand at the two load nodes are constructed using
100 days of actual historical hourly demand data from two of the
PIM zones DAY and AE for the year 2017 [40]. For computational
simplicity, we first reduce the 100 demand patterns of each node
into a small set of (five) representative dominant patterns with
corresponding probabilities using the technique in Ref. [41]. The
demand patterns are depicted in Fig. 3. We then calculate the
average hourly demand of these five patterns, and considered 90
(85)% of the average hourly loads as the fixed loads for node 2 (node
3) and the rest as the EV load. Each of these patterns is considered
as a demand scenario () in the top-layer model. In the absence of
historical data, demand at nodes can be forecasted based on socio-
economic factors using methods discussed in Ref. [42]. The line
connecting nodes 1 and 5 is considered to have a limited trans-
mission capacity of 300 MW. The line reactances are as marked on
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Fig. 2.

Agegregators at nodes 2 and 3 are each considered to manage 100
identical EV parking lots with the following characteristics. Each
has a capacity of 1000 cars, of which 300 can be charged simulta-
neously. Each parking space has a charging rate of 11.5 kW (240V,
48 A) with conversion efficiency (4% of 95%. Composition of the EVs
is considered to be 60% Tesla Model S, 30% Nissan Leaf, and 10%
Chevy Volt with battery capacities of 70 kWh, 40 kWh, and 184
kWh, respectively. The EVs are considered to arrive at the parking
lots all hours of the day, with higher rates in the morning hours. EVs
are considered to stay parked for at least 5 h, and depart at higher
rates in the evening hours. The departure times of the vehicle in the
lot are assumed known. Fig. 4 depicts simulated arrival and de-
parture patterns of EVs in node 2. Similar patterns are generated for
node 3. EVs are assumed to arrive at the parking lots with 20—40%
charge, and leave with full charge. Charging of EVs require reactive
power, which can cause an under voltage problem in the network.
Hence, we have supplemented our DCOPF model with a constraint
on the maximum number of vehicles that can be charged simul-
taneously (as stated before) to keep the reactive power consump-
tion within a desirable level.

Before presenting the numerical results, we provide a brief step-
by-step methodology for implementation of our two-layer model.
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Fig. 2. Modified 5-bus PIM network.

2600 : T T T
2400
2200
2000
1800

1600

Demand in MW

1400

10 15 20
Hour of the day

1200

Historical demand data (grey)

150

w
Yehicle Types

3. 200 m

o wChevyVoll
- g o
- issan
= o :
= 2 = Tesla
Z 2 13

‘s 100

-] had

o g 9

) F‘H

, =:ni RiMsscshild. .
3 10 15 20
Hour of the day
140

w 120

,% a
@ 100
= i
5% e,
z 2 g Ep
e, 2
@ = 60 m il
[a ]

: 40 (516}

Q 65,

; 51

+ 20 lH

25
o R o
5 10 15 20

Hour of the day

Fig. 4. Arrival and departure Limes of EVs of a parking lot at node 2.

« Step 0: The historical hourly demand data of each node is
reduced to a set of dominant patterns (scenarios), product of which
generates the total number of possible scenarios . For each sce-
narios (we£2), we derive RT prices at each node and for all time
periods. These demand patterns and corresponding RT prices serve
as inputs for the top-layer model.

« Step 1: Using DA generators’ supply bids, demand patterns and
corresponding RT prices, the SO clears the DA market by solving the
two-stage stochastic program that incorporates all network con-
straints. The solution of top-layer yields scheduled DA hourly
quantities and corresponding DA prices, which are sent as input to
the bottom layer.

» Step 2: The upper level of the bilevel model is solved by the SO
to determine dynamic prices. The lower level model solves, for each
aggregator, its energy consumption strategy. The bilevel model is
reformulated as a single level MPEC model, which is further
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Fig. 3. Hourly demand scenarios for load at nodes 2 and 3.
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linearized using strong duality principle. This converts the bilevel
model into a single level MILP model.

4.2. Results from the top-layer model: DA market

The DA hourly quantities and prices for each load node are ob-
tained from the two-stage stochastic program. For each demand
scenario (w) we derive RT prices, as discussed in Section 3.1. For
which, the values for the parameters of the normal and Cauchy
distributions are used as (0,0.1) and (0.25,0.05), respectively. The
price spike probabilities (ps) for different hours of the day at both
load nodes are: p; = 0 for hours 1—4 and 22—24; p; = 0.1 for hours
5—12 and 19—21; p; = 0.25 for hours 13—18. Note that, p; — k foran
hour indicates that the RT price in that hour experiences spikes
with a probability k.

Fig. 5 shows the DA quantities (in blue) in nodes 2 and 3
resulting from the top-layer two-stage stochastic model. The area
shaded in grey represents the fixed residential and business loads,
and the curves in red represent the demand scenarios. It may be
observed that during the hours of no price spikes (e.g., hours 1—4
and 22—24), the DA scheduled quantities are close to the lowest
demand scenario. This indicates that without the risk of price
spikes, it is optimal to schedule less in DA market and procure any
additional quantities during the actual hour in the RT market. On
the other hand, when risk of price spike is higher the solution
recommends higher DA quantities close to the highest demand
scenario (e.g., hours 13—18). The numbers marked on the DA
quantity curves in Fig. 5 are the hourly LMPs in $/MWh, which are
sent as input to the bottom-layer model.

In this paragraph, using Fig. 6, we demonstrate how the RT price
spikes can be adjusted in our model to represent various real sce-
narios. As shown in the box plots on top, for each value of p;, from
0.1 to 0.9, we generated 30 samples of the RT prices considering a
low value of the Cauchy distribution g, = 0.25 and MCP of $100/
MWh. The box plots show the ratios of the RT price to MCF. Note
that, for a low value of p; = 0.1, the median of the ratio is close to
one. The median rises to 1.3 for p; = 0.9. The dots in the figure
indicate the presence of sporadic larger spikes. This is similar to the
average daily spikes encountered in ERCOT, NYSO, and CAISO
markets. However, for higher values of the Cauchy distribution
parameter iy, as shown in the bottom set of box plots, the price
spike value increases, reaching to as high as six times higher than
the MCP when w3 = 5.0. Hence, by suitably selecting the parame-
ters p; and uy, our model can mimic price spike scenarios with
different frequency of occurrence and magnitude.
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Fig. 6. RT price spikes for different p; and p;.

4.3. Results from bottom-layer model: dynamic prices and EV
charging schedules

Table 1 exhibits the bilevel model output for all 24 h for aggre-
gator at node 2. These results are obtained using robust parameter

(l"ﬁrj value as 30%, and confidence bounds for future RT prices in'{{ .
Tut
Table 1 using the rows in bold fonts.

It can be seen for hour 1 that the DA procured quantity is
1664.15 MW at a DA price of $93.3/MWh, while the actual total
consumption is 1498.21 MW and the RT price of $113.53/MWh. As

as 10% and 90%. We make several key observations from
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Fig. 5. DA scheduled quantities and corresponding prices at nodes 2 and 3.
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Table 1

Load aggregator at node 2.
Time DA Quantity DA Price Dynamic price Total Demand EV consumption Resi. Demand RT Price im Pl ps

(MW) ($/MWh) ($/MWh) (MW) (MW) (MW) (§/MWh) ($/MWh)  ($/MWh)

1 1664.15 933 91.05 1498.21 9.2 1489.01 113.53 109.38 8294 0
2 1555.11 87.56 86.98 1466.16 299 1436.26 97.27 106.05 80.16 0
3 1490.51 8227 823 1472.88 713 1401.58 79.92 104.08 78.66 0
4 1642.6 91.99 92.28 1563.55 169.05 13945 86.4 105.22 78.69 0
5 1557.34 88.58 88.58 1725.22 307.05 141818 88.58 110.28 76.67 0.1
[ 1641.01 94.65 9424 1855.67 345 151067 91.12 116.94 81.34 0.1
7 1831.76 104.85 103.33 1999.39 345 1654.39 86.78 130.54 87.62 0.1
8 1862.7 107.39 106.66 1750.75 0 1750.75 118.78 135.44 90.74 0.1
9 1985.29 11336 11336 2095.62 321.81 1773.81 11336 131.04 94.09 0.1
10 182539 107.29 107.29 2154.85 345 1809.85 107.29 134.72 95.2 0.1
11 1943 105.09 105.72 217477 345 1829.77 111.04 130.23 95.96 0.1
12 2086 11255 11255 2059.56 216.98 184258 112,52 130,17 96.06 0.1
13 2106.64 113.86 113.62 2192.86 345 1847.86 107.75 140.77 97 0.25
14 277 11665 115.07 1855.25 0 1855.25 125.74 13767 96.52 0.25
15 204195 11208 107.64 1845.2 0 18452 153.72 139.43 95.4 0.25
16 215747 116.38 112.42 1830.31 ] 183031 138.54 140.62 94.79 0.25
17 2299 129.21 129.18 18427 0 18427 129.32 142.88 97.36 0.25
18 230244 140.59 137.37 1887.11 ] 1887.11 155.22 154.04 102.38 0.25
19 2146.26 128.14 128.63 22421 33133 1910.76 139.64 143.03 103.71 0.1
20 207499 131 130.31 2261.82 345 1916.82 122.62 144.85 105.94 0.1
21 2005.33 119.58 117.44 2194.36 319.7 1874.66 94.79 138.48 103 0.1
22 2059.31 11819 117.88 1991.72 171.84 1819.88 127.13 129.83 98.82 0
23 181792 103.49 103.48 1812.01 90.85 1721.16 106.47 123.09 93.68 0
24 1746.14 1006 98.74 1621.47 1621.47 124.81 11535 87.92 0

the RT price spike probability at this time is zero, the DA market
schedules a quantity close to the lowest demand scenario. How-
ever, even without the spike, the basic variations in the RT price
(modeled by normal distribution) has yielded a relatively high RT
price of $113.53. As a result, the model chose to consume less than
DA quantity and sell remaining in the RT market at a higher RT
price. To balance this excess revenue, the revenue neutral SO offers
a dynamic price ($91.05) that is lower than DA price ($93.3). Similar
observations can be made for hour 8. Even with the presence of a
significant number of EVs in the parking lots, optimal decision is
not to charge any vehicles and keep the total demand low. At hour
4, the DA quantity is 1642.6 MW at a DA price of $91.99/MWh and
RT price is $86.4/MWh. Though the RT price is lower, at hour 4, as
the EV charging demand is low, the total demand is lower than the
DA quantity. The excess DA amount is traded in the market at the RT
price that is lower than DA price. To recover this loss, the revenue
neutral SO selects a dynamic price that is higher than DA price. At
hour 7, the DA quantity is 1831.76 MW at a DA price of $104.85/MW.
The RT price $86.78/MWh is much lower than the DA price (as in
hour 4). However, in contrast to hour 4, hour 7 has sufficient de-
mand in the network to consume all of DA scheduled quantity and
more. Hence, the SO offers a dynamic price ($103.33) that is lower
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Fig. 7. Visualization of some results from Table 1.

than the DA price to promote consumption above the DA quantity.
A final observation that we make is about time periods 8 and 19. At
hour 8, the RT price is $118.78/MWh and the EV consumption is
zero, whereas at hour 19, with RT price as $139.64/MWh and the EV
consumption is very high (331.33 MW). This difference can be
attributed to the vehicle charging needs close to departure times as
well as the decisions the model made in previous hours 14—18 not
to charge any EVs due to high RT prices.

For ease of further exposition of the numbers in Table 1, we
develop combined plot of five of the columns from Table 1: DA
price, RT price, lower and upper price bounds, and the total EV
consumption (see Fig. 7). It depicts the trajectories of the DA and RT
prices as well as the total hourly EV consumption. It may be noted
that EV charging is avoided, when possible, during times of price
spikes.

Results similar to those for node 2 are also observed for load at
node 3. The daily average dynamic price for aggregators at nodes 2
and 3 are $109.45/MWh and $102.90/MWh, respectively. This dif-
ference can in part be attributed to the congestion in the network.
Hereafter, we examine separately the impact of demand response
and pricing practices on the daily cost to the consumers.

4.4, Impact of demand response and pricing practice

Here, we first examine the impact of demand response via
optimal charging of EVs on the network. This is done by comparing
the total cost to consumers under optimal charging with the cost of
an adhoc EV charging strategy with no demand response. Those
costs are assessed under the same dynamic pricing policy of our
model. The comparison is replicated four times. For the optimal
charging strategy, the solution is obtained for three different values
of the robust parameter l'fr (0, 0.3, and 0.5). The comparison re-
sults for load node 2 are presented in Table 2. In all four replicates,
the total cost of meeting the demands under optimal EV charging
strategy is lower than the adhoc strategy. Based on the average
values shown in the last row, the overall average dynamic price
with demand response is $1.4/MWh lower than that of dynamic
price with no demand response (adhoc policy). Also, the total
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Table 2

Optimal policy vs adhoc policy for load at node 2.
Optimal policy Adhoc policy

RT RT

rfr—o Iy =03 r, =05
Total cost Avg.DP (§/MWh) Total cost Avg.DP ($/MWh) Total cost Avg.DP ($/MWh) Total cost Avg.DP ($/MWh)
$4,996,992 110.08 $4,994,972 110.04 $5,007,262 11031 $5,047,213 111.19
$4,961,292 109.30 $4,968.471 109.45 $4,987,796 109.88 $5,022,622 11065
$4,966,925 109.42 $4,943,053 108.89 $4.941,478 108.86 $5,063,857 11155
$5,156,280 11359 $5,159,984 113.67 $5,167,509 113.84 $5,217,924 11495
55,020,372 110.60 §5,016,620 110.51 $5,026,011 110.72 $5,087,904 112.08

consumer cost saving from demand response is $70,000 per day.
Similar results are observed for load node 3, which yield a reduction
in the daily average dynamic price of $1.8/MWh and the daily cost
saving of $45,000. Hence, the total consumer cost saving obtain via
demand response for nodes 2 and 3 (with EV parking lots repre-
senting 10% and 15% of the total loads) for the sample 5-bus
network is $115,000 per day and $42 million per year.

We now compare the benefits of our dynamic pricing strategy
with those obtained from the commonly used pricing practices: flat
pricing, TOU pricing, and CPP. We present the comparison for load
node 3 (See Table 3). For the flat pricing policy, we consider the
average of the 24 hourly DA prices at node 3 (from the top-layer
model) as the fixed price throughout the day, which is obtained
as $102.58/MWh. For TOU pricing, we assume that flat price of
$102.58/MWh prevails for all hours except the peak hours 13—18
when the price is 1% higher ($103.61). For CPP, we consider the
same flat price except for the hours when the RT price exceeds the
flat price by 20%, at those times the price increases by 1%.

Table 3 exhibits the results for daily average price ($/MWh), cost
to the consumers, and revenue of SO for all the above pricing
practices. Also given within parenthesis (in bold) are the effective
cost to the consumers for each pricing practice. The effective costs
are used for fair comparison and are obtained by passing the SO's
revenue shortfallfsurplus to the consumers cost. The dynamic

pricing policy, implemented with l‘:fr as 30%, results in a daily
average price of $101.85/MWh (less than the flat price) with a total
consumer cost of $2,529,117 and SO revenue of $21 (approximately
revenue neutral). For flat pricing policy, the total daily effective cost
to consumers is $36,584 higher than the dynamic pricing policy.
The SO experiences a revenue loss of $18,388 in TOU. We examined
two other adhoc flat pricing scenarios with prices 1% higher (row 2)
and 1% lower (row 3) than the fixed price of $102.58/MWHh. In the
case of 1% higher price, which is motivated by the desire to avoid SO
revenue loss, the effective cost to consumer remains the same
while the SO revenue swings to a surplus of $7190. When flat price
is reduced by 1%, the SO revenue loss soars to $43,716. For TOU
pricing policy, the effective cost to consumers is higher by $10,897
than the dynamic policy. As in the case of flat pricing, we examine
two other TOU scenarios with flat prices 1% higher and lower. For

CPP, the effective cost to consumer is $2418 higher than the dy-
namic pricing. As in flat and TOU policies, outcomes for the two
other CPP scenarios are not as desirable as the revenue neutral
dynamic pricing policy. The effective cost to consumers decreases
in the pricing sequence: flat, TOU, CPP and dynamic. Similar ob-
servations are also obtained for load node 2.

5. Concluding remarks

We have developed a robust game-theoretic model that
simultaneously yields hourly binding dynamic prices of electricity
(for 50) and the corresponding demand response actions using EVs
(for load aggregators). The model aims to minimize the cost to
consumers in a network subjected to price spikes, and keep the SO
revenue neutral. Our model is formulated as a two-layer optimi-
zation model where the top-layer is a two-stage stochastic model
and the bottom-layer is a bilevel model. We have demonstrated the
implementation of the model on a modified 5-bus PJM network in
which 10—15% of the total load is consumed by EVs that participate
in DR; thermostatic loads are not considered as part of DR. A low to
moderate price spike scenario where the median price is 1.25—1.5
times higher than the base price is examined. It is shown that by
using dynamic pricing and demand response, the daily average
consumer cost is 1.5% lower than the cost when dynamic pricing is
offered but no demand response actions are taken. The consumer
cost resulting from the use of our dynamic pricing and demand
response policy is also compared with the cost from the flat pricing
policy, for which we achieve a reduction of 1.42%. We also imple-
mented our model on a high price spikes scenario with a median
price spike 3.5 times higher than the base price. For this, we achieve
a daily average consumer cost reduction of 6.5% from flat pricing. It
is evident that our model is able to accommodate price spikes and
yield appropriate policy for dynamic pricing and demand response
to support SOs and load aggregators. The above mentioned benefits
of our model are quite as expected, as researchers and practitioners
have long predicted that a true form of dynamic pricing and
network wide demand response will bring such benefits. A recent
paper claimed the expected cost benefits to be between 2 and 4%
[6].

Table 3
Comparison of dynamic pricing with traditional pricing for load at node 3.
Dynamic pricing Flat Pricing TOU pricing crr
Avg Total cost ($) S0 Revenue Avg Total cost ($) S0 Revenue Avg Total cost ($) SO Revenue Avg Total cost ($) S0 Revenue
$/MWh (%) $/MWh ($) $/MWh (%) §/MWh (5)
101.85 2,529,117 21 10258 2,547,292 18388 10258, 2,552,681 12,688 102.58, 2,551,021 19,508
(2,529,096) (2,565,680) 103.61 (2,539,993) 103.61 (2,531,514)
10361 2,572,869 7190 103.61, 2,578,258 38,265 103.61, 2,576,599 46,818
104.64 104.64
10156 2,521,963 43,716 101.56, 2,527,247 12,746 101.56, 2,526,653 3699
102,57 102.57
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We note that, application of our model in real networks with
many buses will introeduce a number of computational challenges.
For example, in the top-layer model the total number of demand
scenarios (£2) will increase exponentially with the number of load
buses. The constraint matrix of the network, in the top-layer model,
will also grow large and sparse. Use of efficient scenario reduction
techniques (as in Ref. [41]) and inherent capability of Gurobi opti-
mizer to deal with sparse matrices can be used to alleviate some of
the above challenges. As far as the bottom layer model is concerned,
the number of EV aggregator models that we need to solve in the
lower level will increase linearly with the number of load buses.
Since these models are considered to be independent of each other,
a distributed computational approach can address this. Imple-
mentation of our model for a large network therefore is a topic of
future research.

Appendix A. KKT formulation for the lower-level
(aggregator's) model

In order to convert the bilevel model of the bottom-layer into a
single level mixed integer programming model, we write the KKT
conditions for each load node in the lower-level. The KKT condi-
tions comprise the set of stationarity conditions (A.1)-(A.5) with
respect to dual variables of the aggregator's problem, comple-
mentary slackness conditions (A.6)-(A.10), and collection of
constraints (19)-(23). The KKT conditions for a load node ne N, are
given as follows.
(Enr)

Pnr < Tar, (A1)

pue <A (Ew)  Vi>T (A2)

Pt + pP T~ mhyhAL<0, (Ph) Ve VpeNd

(A3)

vhe — vh VR ‘\D".;(“” byl <0, (S()Cgl) (A4)
¥t=r1,-,T 1,¥peNE

oo iy eyl <0, (SOCE)  Vt=T,¥peNE' (A5)
0<upLPP >0, Vt>T1,¥peNy (A.6)
0< ngll(;‘)fu Pﬁl) >0, Vt>r7,VpeN! (A7)
0<,150CP, >0, Vt>7,¥peNp (A.8)
0 <#,1(S0C,  S0Ch) > 0, vt > 1, vpeNy (A.9)

0<ypL|SOCE — { DD QR Th > > “ﬁngkTﬁhk

h<tkeCh h=<tk=Cj

=0, Vt=>7,VpeN!
(A.10)
pn!,gﬂpﬁﬁl,ﬁljﬂ“ﬂ[ > 0,y®, - free variable.

Note that, the stationarity condition for the primal variable (Eyn;)
is split into two parts, for the current hour 7 (A.1) and for all future

hours t > (A.2). Similarly, for the primal variable SOCE,, we have

nit*

two inequalities, one for all t <T (A.4) and the other for T (A.5), as
there is no state update from T to T+ 1. The complementary
slackness conditions (A.6)-(A.10) are of the general form
0 < ulh(x) > 0, which are linearized by substituting with the
following: u = 0, h(x) = 0, u < Mz and h(x) < M(1 — z), where (big)
M is a large constant and z is a 0—1 binary decision variable.
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