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Abstract—Demand response (DR) is expected to rise with the
increasing used of dynamic pricing and availability of advanced
metering infrastructure in power networks. The DR capabilities
will also be supplemented by the growth of electric vehicles (EV)
and their aggregation in smart parking lots. EV aggregators
will optimally schedule charging of the EVs depending on the
varying hourly price of electricity and it will sell excess stored
power to load centers. In this paper we consider a scenario
having a load aggregator that schedules a large number of load
consuming entities (LCEs) and an EV aggregator that manages
a large fleet of parked cars. The aggregators engage in DR and
mutually benefit by sharing power through option contracts at
times during the day when market price peaks. We develop
Nash bargaining strategies for fixed call and swing call options.
A numerical problem formulated with PJM market data is used
to examine the impacts of option price, strike price, and option
quantity on the Nash bargaining solutions under various market
power scenarios of the two aggregators.
Keywords: option contract; energy sharing; Nash bargaining
solution; demand response.

I. INTRODUCTION

Electric power networks continue to experience significant
hourly variations in demand and the resulting price spikes.
According to Energy Online1, in the month of May 2018, in
the ERCOT market, the price of electricity at several time
instances rose to $750 to $1600/MWh from an average level of
$25 to $60/MWh. The NYSO market, during the same period,
experienced price spikes in the range of -$600 to $1000/MWh.
Demand response (DR) has long been recognized as a necessity
to ease demand and price spikes in power networks [5]. Recent
papers and reports have also emphasized the need for network
wide demand response [8, 10]. The state of DR, however, has
remained limited to implementations of direct and indirect load
control, guided by either direct incentives or price variations
[27]. This limited state is primarily attributed to the lack of
adoption of dynamic pricing (where binding prices are declared
by the system operator ahead of consumption in small time
intervals) and unavailability of enabling technology (advanced
metering infrastructure and network connectivity of the loads).
Attaining a desired level of DR will also require coordination
among the large numbers of load consuming entities (LCE)
in localized regions. Aggregators managing such coordination
will make the DR decisions based on the dynamic price signals
and the preferences of the participating LCEs.

Impending growth of electric vehicles (EVs) will soon add
a new dimension to this challenge. It is estimated that the

1https://www.energyonline.co.nz (last accessed Aug 15, 2018)

number of EVs in the U.S. will grow to 7.3 million by
2023 [4]. Considering an average battery capacity of 70 kWh,
charging of these batteries even once a day may consume
up to an additional 500,000 MWh. If not managed well, this
may lead to further increase in price spikes. However, it is
possible that EV growth can be turned into an opportunity by
using smart, connected, and aggregator managed EV parking
lots as the new demand response providers. Since a large
number EVs in these lots will remain parked long enough,
the aggregators can optimally schedule charging based on
dynamically varying prices and owner preferences. This will
facilitate load balancing and minimize any additional stress
on the network. Moreover, the EV batteries will enable the
aggregators to store extra energy and sell it to either the system
operator (SO) or to other third parties during peak demand
hours of the day. This paper present models for developing
DR actions by residential/business loads aggregators (referred
to as DRAs) and also by the EV aggregators (EVAs). The DR
models are then used to design an option contract that allows
a DRA to buy energy stored by an EVA during times of the
day when the gap between the forward and real time prices
are high.

The LCEs managed by the DRA are assumed to have fixed
and deferrable (shiftable and adjustable) loads with preferred
operating time windows and power levels. It is considered that
all LCEs must be scheduled before the end of the day. The
EVA manages an heterogeneous fleet of EVs, with different
battery sizes, arrival and departure times, along with technical
constraints such as maximum and minimum state of charge
and maximum rates of charge/discharge. The EVA’s revenue
comprises the payments it receives from both the EV owners
(per fixed contract) and the DRA (from the option contract).
The EVA pays overcharge and undercharge penalties to the EV
owners for any deviation form the desired state of charge at
the time of departure from the parking lot. A dynamic pricing
policy is assumed to be in place for network. The DRA and the
EVA are offered binding hourly dynamic prices of electricity at
each node by the system operator. These prices are considered
as exogenous input to our separate DR optimization models
for the DRA and the EVA for both plain and swing option
contracts. These DR models are used to formulate a Nash
bargaining model that yields the optimal parameters for the
option contracts for load sharing between the DRA and EVA.
In summary, the modeling framework allows the DRA to
benefit from its ability to alter load pattern as well as buying
stored energy from the EVA during peak price hours. The



2

EVA derives its benefits from optimal charging of the EVs as
well as the temporal arbitrage opportunity. The SO benefits
from the load balancing as well as the reduction of the cost
to consumers.

Integration of EVs in power networks has become a critical
research issue. The EVA can be seen as a mid-size source
of generation or load depending on the supply-demand-price
status of a network. Several studies have examined the technical
and economical feasibility of incorporating EV aggregators
as a network resource. A conceptual regulatory framework
and a business model to integrate EVs in the network and
in turn support the power system operation is proposed in
[21]. A model for charging of EVs considering the non-
linear state-of-charge curve for the batteries is developed in
[11]. The study in [6] argues the benefits of having a profit
seeking aggregator providing energy storage (e.g., using EVs
in parking lots). They use a Nash bargaining model to predict
the cooperative equilibrium between the aggregator and the
storage providers. Aggregation and optimal charging of EVs in
coordination with the SO is studied in [18]. They show the EV
penetration level that a network would be able to absorb without
requiring generation expansion when the charging of the EVs
is coordinated with the SO. The profitability of the aggregator
and the benefits to SO by offering power stored in EVs to
the energy and reserve markets are explored in [22]. Optimal
and risk averse bidding strategies for EV aggregators under
the constraints of market uncertainty, EV owners’ behavior,
and aggregators’ profit volatility are presented in [13, 25, 28].
In [3], a stochastic programming methodology is developed
with an objective of maximizing aggregator profit by charging
the EVs on low price periods under varying market prices.
A stochastic model from the system operator’s perspective in
[16] incorporates demand response offered by the EVs. It is
shown that, by using the model, SO can minimize the operation
cost by optimally scheduling conventional generators, and the
aggregators can minimize the electricity payment through DR
participation. The objective of minimizing the cost of EV
parking lot operation is approached via a cooperative game
model in [1].

Option contracts in power markets have served as an
effective tool to limit the risk of price uncertainty. A review of
a variety of financial instruments that are used in the electricity
market are discussed in [7]. Since our focus in this paper is
on option contracts, we limit our review on the use of this
particular instrument in power markets. The effect of choice of
option parameters in the day-ahead market is studied for put
options in [26]. It has been shown through a simulation study,
that producers that participate in both the option and day-ahead
markets get a higher share of the profit than those who only
participate in the day-ahead market. In [17], the performance of
American put options in the Turkish power system is compared
with forward contracts. A tutorial is offered in [19], in which a
multi-stage stochastic model is proposed to determine optimal
option and forward contracts for a risk-averse producer. It is
shown how option contracts can be used to reduce price and
availability risks. Use of financial engineering methodologies to
estimate the value of three common demand-response services:

load curtailment, load shifting or displacement, and short-term
fuel substitution is presented in [24].

In the remainder of this paper, Section II presents the mixed
integer linear programs to attain optimal DR actions for DRA
and EVA for both plain and swing option contracts. In Section
III, the Nash bargaining solution (NBS) model is presented
and its solution approach is discussed. A case study based on
recent PJM market data is examined in Section IV. Section V
presents the concluding remarks.

II. DR MODELS FOR DRA AND EVA WITH OPTION
CONTRACTS

In this section, we develop separate DR models for DRA
and EVA considering two different types of possible option
contracts between them: plain call option and swing call option.

A. Plain call option

In plain call option, the DRA holds the right, not the
obligation, to acquire a fixed amount of energy, all at once,
from EVA at a prespecified strike price within a given time
window. The DRA pays a fee (option value) to the seller for
the right.

1) DRA’s DR model for plain option: We consider that
the loads managed by the DRA are of two types: fixed and
deferrable loads. Schedules of fixed loads are not controlled
by the DRA and must be satisfied as is at each time
period. The schedules and consumption level of deferrable
loads are controlled by the DRA. Deferrable loads have
two subcategories: shiftable loads and adjustable loads. DRA
can schedule operation of shiftable loads at any time within
the respective time windows. Whereas, for adjustable loads,
DRA can both schedule as well as adjust the level of power
consumption, while satisfying the total power requirement of
the load in the operational time window.

For each LCE i ∈ C, where C is the set of all LCEs managed
by the DRA, has a set of shiftable loads denoted by Si, which
comprises the individual loads j with consumption level sij per
unit time. The length of operation of a shiftable load is denoted
by τij . The start and finish time intervals, within which the
operation can be scheduled, are denoted by Tj , Tj ∈ T , where
T denotes the set of all time intervals of a day, over which the
DRA schedules the loads. Let xijt denote a binary variable
indicating on/off status of the shiftable load (i, j) during time
interval t ∈ T . Then, we can write:

Tj∑
t=Tj

xijt = τij , ∀i ∈ C, ∀j ∈ Si. (1)

The set of adjustable loads within a LCE is denoted by Ai.
The maximum (minimum) level of consumption per unit time
of individual loads j ∈ Ai is denoted by Rij (Rij) within
the allowable interval [Rj , Rj ]. Let yijt be a binary variable
indicating on/off status of the adjustable load (i, j), rijt denote
its energy consumption level at time interval t ∈ T , and σij
denote the total required energy consumption. Then,

Rij yijt ≤ rijt ≤ Rijyijt, ∀i ∈ C, ∀j ∈ Ai, ∀t ∈ T , (2)
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Rj∑
t=Rj

rijt = σij , ∀i ∈ C, ∀j ∈ Ai. (3)

Let Fi be the set of fixed loads and fijt ∈ Fi be the jth

fixed load of LCE i at time interval t. Then, the total energy
that LCE i consumes at a given time interval t is:

dit =
∑
j∈Fi

fijt +
∑
j∈Si

sijxijt +
∑
j∈Ai

rijt, ∀t ∈ T , i ∈ C.

(4)

Thus, the energy that the DRA must buy from the grid at a
give time period is:

dt =


∑
i∈C

dit − qt, ts ≤ t ≤ te,∑
i∈C

dit, Otherwise,
(5)

where qt is the energy bought form the EVA at time interval
t within the option window defined by time intervals ts and
te. Recall that a plain call option can only be exercised once,
and the DRA has the right, but not the obligation, to exercise.
Hence, we need to add the following constraints. Let zt = 1,
if energy is purchased by the DRA from the EVA during the
time interval t and 0 otherwise, and Q is the option quantity.
Then we can write that

te∑
t=ts

zt ≤ 1, and qt = Qzt, ∀ts ≤ t ≤ te. (6)

Let Πt, K and V be the market price of electricity, the
option strike price, and the option value (paid once a day)
respectively. The DRA aims to minimize the total cost of its
LCEs using the model below.

uDRA(K,V,Q,Π) =

min
∑
t∈T

Πtdt +

te∑
t=ts

Kqt + V, (7)

s.t., (1)–(6),
dt, dit, qt, rijt ≥ 0, ∀t ∈ T , ∀i ∈ C,∀j ∈ Ai, (8)
xijt ∈ {0, 1}, ∀t ∈ T , ∀i ∈ C,∀j ∈ Si, (9)
yijt ∈ {0, 1}, ∀t ∈ T , ∀i ∈ C,∀j ∈ Ai, (10)
zt ∈ {0, 1}, ∀t ∈ T . (11)

2) EVA’s DR model for plain option: Let B denote the set
of EV batteries managed by the EVA. For a given time interval
t ∈ T , energy balance of the battery b ∈ B can be written as:

φbsbt = φbsb,t−1 + p+bt − p
−
bt, ∀t ∈ T , ∀b ∈ B, (12)

where φb is the maximum capacity of the battery b, sbt ∈ (0, 1)
is the state of charge of battery b at the end of time interval t,
p+bt is the amount of energy that the bth battery draws from
the grid at time interval t, and p−bt is the amount of energy
that is extracted from battery b at time interval t. We assume
that, the state of charge of EV batteries are not allowed to be
0 nor 1, and hence the following constraint is added to the

model.

Sbt ≤ sbt ≤ Sbt,∀t ∈ T , ∀b ∈ B, 0 < Sbt ≤ Sbt < 1. (13)

Furthermore, the charging (discharging) rate of a battery have
a technical upper bound, which in general is a convex and
monotonically decreasing (increasing) function of the current
state of charge. For simplicity, we assume the bounds to be
constant. Hence, we can write that

0 ≤ p+bt ≤ P
+w+

bt ∀t ∈ T , ∀b ∈ B, and (14)

0 ≤ p−bt ≤ P
−w−bt, ∀t ∈ T , ∀b ∈ B, (15)

where P+ (P−) is the charging (discharging) upper bound,
and w+

bt (w−bt) is 1 if battery b is charging (discharging) at time
interval t, and 0 otherwise. The next constraint guarantees that
the battery b is not in charging and discharging simultaneously
during time interval t:

w+
bt + w−bt ≤ ωbt, ∀t ∈ T , ∀b ∈ B, (16)

where ωbt is a binary parameter with the value of 1 if the bth

battery is connected, i.e., the EV is in the parking lot, and 0
otherwise.

We assume that the EVA charges a flat price g (g/kWh) to
the EV owners for charging the batteries. Hence, EV owners
pay g(sbTb

−sb0)φb to the EVA each time they use the parking
lot, where sb0 is the initial state of charge of the bth EV, Tb ∈ T
is the departure time of the bth EV, and φb is the battery rated
capacity. We denote the minimum required state of charge at
the time of departure of the bth EV as δbTb

. Similarly, we
denote the desired state of charge at the time of departure
from the parking lot as ρbTb

. If the state of charge at the time
of departure is above ρbTb

, the surplus energy is priced by
EVA at a lower rate, which we will assume is equal to the
average night time price. Let µ1 denote the difference between
the flat rate g and the average night time rate. The EVA also
pays the EV owner an undercharge penalty µ2 (g/kWh) for
each unit of energy below ρbTb

at the time of departure. To
calculate the undercharge and overcharge fees, we introduce
two continuous variables as follows:

sbTb
− ρbTb

= s1b − s2b ∀b ∈ B, (17)

where s1b , s
2
b ≥ 0. Then the total overcharge and under-

charge fees paid by the are computed as µ1

∑
b∈B φbs

1
b

and µ2

∑
b∈B φbs

2
b , respectively. The following constraint is

introduced to account for the power that the EVA must sell to
the DRA in the option window:∑

b∈B

p−bt = q̃t(Π,K), ts ≤ t ≤ te. (18)

The option quantity must be supplied using the stored power
if the option is exercised. However, the EVA does not know the
decision making process of the DRA, therefore it must estimate
qt. We denote as estimate of the vector q given the random
price of electricity Π as q̃(Π,K), or in component-wise form,
q̃t(Π,K). Hence the EVA’s DR problem for the plain option
is formulated as a bi-level model as follows, where the lower
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level is used to obtain q̃(Π,K).

uEVA(K,V,Q,Π) =

min
∑
t∈T

∑
b∈B

Πtp
+
bt + µ1

∑
b∈B

φbs
1
b + µ2

∑
b∈B

φbs
2
b

− g(sbTb
− sb0)φb −K

te∑
t=ts

q̃t(Π,K)− V, (19)

s.t., (12)–(18),

p+bt, p
−
bt, sbt, s

1
b , s

2
b ≥ 0, ∀t ∈ T , ∀b ∈ B, (20)

w+
bt, w

−
bt ∈ {0, 1}, ∀t ∈ T , ∀b ∈ B, (21)

where

q̃t(Π,K) = Qz̃t(Π,K), ts ≤ t ≤ te, (22)

z̃(Π,K) = arg max
z̃

te∑
t=ts

(Πt −K)z̃t, (23)

s.t.,
te∑
t=ts

z̃t ≤ 1, (24)

z̃t ∈ {0, 1}, ts ≤ t ≤ te. (25)

For simplicity of notation, we define C = (K,V,Q) for the
plain option, and write the disutility functions as uDRA(C,Π)
and uEVA(C,Π). Note that these disutilities are random
variables.

B. Swing call option

Swing call option for electricity, as considered here, differs
from our plain call option in the following manner: contract
quantity can be purchased at one or more time instances within
the window; individual purchase quantities are bounded by
time dependent values; the strike price may either be fixed or
vary with time; the ramp up/down rates of quantity purchased
may also be bounded.

1) DRA’s DR model for swing option: In addition to
constraints (1)–(5) and (8)–(11) in the DRA’s model for plain
option, we need a few other constraints as described below. In
a swing contract, if the holder exercises the option, the energy
bought at each interval as well as the total quantity bought
over the contract window must satisfy

Qtzt ≤ qt ≤ Qtzt, ts ≤ t ≤ te, and (26)

Qz ≤
te∑
t=ts

qt ≤ Qz, (27)

where Qt(Qt) and Q(Q) are the lower (upper) bounds for
energy purchase during a time interval t and over the total
contract window, respectively. Also, zt = 1 if the option is
exercised at time interval t and 0 otherwise, and z = 1 if the
option is exercised at least once within the window. Therefore
the relationship between zt and z is given as

te∑
t=ts

zt ≤ (te − ts + 1)z. (28)

Then the DRA model for a swing call option can be given as

uDRA(K,V,Qt, Qt, Q,Q,Π) =

min
∑
t∈T

Πtdt +

te∑
t=ts

Kqt + V, (29)

s.t., (1)− (5), (8)− (11), (26)− (28), z ∈ {0, 1}. (30)

2) EVA’s DR model for swing option: Since the EVA is
subjected to the value of qt chosen by the DRA, the same
general model proposed for plain option in (19) applies for
the upper level problem in a swing contract. However, the
lower level must consider the new contract parameters. Then
we have that

uEVA(K,V,Qt, Qt, Q,Q,Π) =

min
∑
t∈T

∑
b∈B

Πtp
+
bt + µ1

∑
b∈B

φbs
1
b + µ2

∑
b∈B

φbs
2
b

− g(sbTb
− sb0)φb −K

te∑
t=ts

q̃t(Π,K)− V, (31)

s.t., (12)–(18), (20), (21),

where

q̃(Π,K) =

arg max
q̃

te∑
t=ts

(Πt −K)q̃t, (32)

s.t., Qtz̃t ≤ q̃t ≤ Qtz̃t, ts ≤ t ≤ te, (33)

Q z̃ ≤
te∑
t=ts

q̃t ≤ Q z̃, (34)

te∑
t=ts

z̃t ≤ (te − ts + 1)z̃, (35)

z̃t ∈ {0, 1} ts ≤ t ≤ te, (36)
z̃ ∈ {0, 1}. (37)

For simplicity of notation, we define C′ =
(K,V,Qt, Qt, Q,Q) for the swing option, and write
the disutility functions as uDRA(C′,Π) and uEVA(C′,Π).

III. OPTION CONTRACT DESIGN

In this section we present the model to obtain the optimal
strike price and option value when all the other option
parameters are given for the plain and swing option contracts.
We use the Nash’s approach to the bargaining problem to find a
fair option contract for both DRA and EVA while considering
their relative market power. Sequential Monte Carlo simulation
approach is used to estimate the expected cost/revenue of the
DRA and EVA.

A. Nash bargaining approach

The goal of both DRA and EVA is to minimize their
disutility by establishing an optimal option contract. However,
since they have conflicting objective functions, a solution that
simultaneously minimizes both or their costs does not exist.
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In such a scenario, the aggregators may cooperatively bargain
with each other to find the most appropriate contract. The
bargaining problem of the cooperative game theory [29] can
be formalized as follows . Let n = 1, 2, ..., N be the set
of players, and S be a closed and convex subset of RN to
represent the set of feasible payoff (cost) allocations that the
players can get if they cooperate. Let uk0 denote the minimal
(maximal) payoff (cost) that the kth player would expect
without cooperation. The vector (S,u10, ..., u

N
0 ) is called a N -

person bargaining problem. We chose the Nash bargaining
solution (NBS) to address the two person (DRA and EVA)
bargaining problem. NBS is known to be invariant, Pareto
optimal, independent of irrelevant alternatives, and symmetrical.
Furthermore, in a bilateral negotiation, it is reasonable to expect
that the player with higher market power will have a larger
share of the benefits than the weaker player. To incorporate the
market power, we use the generalized Nash bargaining solution
(GNBS) approach [14]. The GNBS for the plain option contract
can be formulated as:

max
(
E[uDRA(0,Π)]− E[uDRA(C,Π)]

)α
(
E[uEVA(0,Π)]− E[uEVA(C,Π)]

)1−α
(38)

s.t., (1)− (25),

where α ∈ (0, 1) is an indicator of DRA’s relative market
power, and E[uDRA(0,Π)]) is DRA’s expected payoff at the
disagreement point; E[uEVA(0,Π)] denotes the same for EVA.

The GNBS formulation for the swing option is similar to
that for plain option, with the only difference being in the set
of constraints that define the feasible set. It can be written as

max
(
E[uDRA(0,Π)]− E[uDRA(C′,Π)]

)α
(
E[uEVA(0,Π)]− E[uEVA(C′,Π)]

)1−α
(39)

s.t., (1)− (5), (8)− (11), (12)–(18), (20), (21),
(26)− (28), (30), (32)− (37).

Note that, uDRA(C,Π) and uEVA(C,Π) can be written as

uDRA(C,Π) = uDRA(K, 0, Q,Π) + V, (40)

uEVA(C,Π) = uEVA(K, 0, Q,Π)− V. (41)

Similar expressions can be written for the swing option.

In the rest of this section, we present an approach for
obtaining the optimal values of the option parameters. For
any option contract, an expression for the option value V can
be found using the first and second order conditions for a
given strike price K. Let, for the plain option,

N =
(
E[uDRA(0,Π)]− E[uDRA(C,Π)]

)α
(
E[uEVA(0,Π)]− E[uEVA(C,Π)]

)1−α
. (42)

For swing option, the expression for N is same as above with
C replaced by C′.

Proposition 1. For any given K and Q, the optimal option

value V is given as

V =(1− α)
(
E[uDRA(0,Π)]− E[uDRA(C̃,Π)]

)
− α

(
E[uEVA(0,Π)]− E[uEVA(C̃,Π)]

)
,

(43)

where C̃ = [K, 0, Q] for the plain option and C̃ =
[K, 0, Qt, Qt, Q,Q] for the swing option.

The value of V in (43) maximizes N . Note that, since V
does not appear in any of the constraints of the GNBS model
(38) and (39), we can use the first order and the second-order
conditions. Taking the logarithm of N and letting ∂ log(N)

∂V =
0, we obtain the optimal V in (43). It can be checked that
∂2 log(N)
∂V 2 < 0 for all α ∈ (0, 1). Note that since V does not

appears in the constraints of the DR models, the option value
can be obtained by independently solving the DR models of
DRA and EVA.

If both K and V are given, then the optimal solution of
the generalized Nash bargaining formulation in (38) and (39)
can be found by solving the DR models of the DRA and EVA
individually. Clearly, since there are no common variables
between the DRA’s and the EVA’s models when K and V are
given, the optimal solution for the GNBS can be found by
minimizing the cost of the aggregators independently. However,
if only V is given, the optimal solution of the problem can
be found by effectively exploring the possible values of K.
One such approach is by the golden-section search method,
in which the value of K is fixed in each iteration. Lower and
upper bounds are computed by shrinking down the range of
possible values, at which the optimal solution can be obtained.

As discussed above, finding optimal NBS values for the
option parameters (K and V ) as well as the GNBS solution,
we need to calculate E[uDRA(C̃,Π)]

)
and E[uEVA(C̃,Π)]

)
.

We use sequential Monte Carlo simulations to estimate these
expected values. In this method iterative approach, for each
iteration k, a random sample π(k) of hourly prices of a
day is drawn from Π. Then, we solve for the values of
uDRA
k (K,V,Q, π(k)) and uEVAk (K,V,Q, πk). This process is

repeated for a large number of iteration N . The expected
values are computed as averages, e.g.,

E[uDRA(K,V,Q,Π)] ≈ 1

N

N∑
k=1

uDRA
k (K,V,Q, π(k)). (44)

Note that, by using SMCS, the stochastic problem is approxi-
mated by solving a large number of instances of a deterministic
mixed integer linear problem, which is done efficiently by
commercial solvers such as GUROBI and CPLEX.

IV. COMPUTATIONAL STUDY AND RESULTS

We tested the proposed option design models by constructing
a sample problem using the hourly locational marginal prices
(LMPs) of electricity from July 15, 2017 to July 30, 2017
at the DAY node of the PJM market in the U.S. We use
this data to construct the input for the hourly prices (Π)
for our model. A multinormal distribution is assumed to
describe the price variations. The mean and covariance of
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Fig. 1: Option value as a function of the strike price for
different relative market power, for plain call option

the distribution is obtained from the overall average and the
hourly variance, respectively, of the LMPs. The load (before
demand response) managed by DRA is assumed to have the
same shape as the load at DAY bus. The magnitude, however,
is scaled by a factor of 80. This load is categorized into fixed
(40%), adjustable (30%) and shiftable (30%) loads. To keep
the numerical example simple, it is considered that the total
adjustable load for the day is consumed by five load consuming
entities (LCEs). For each of these entities, a separate time
window (hours) is allocated (3–11, 5–14, 7–14, 12–21, and
10–17) and within those hours the entities must be scheduled
such that they consumer their designated amount of energy.
The total shiftable load is also assumed to be consumed by
five LCEs with designated time windows in hours (same as
adjustable loads).

with the exception that the consumption of
each entity is scheduled in only one of the
hours in the respective windows.

For the sake of simplicity, we consider the following
characteristics for the EVA. It manages a parking lot with
a capacity to park and charge 200 EVs. Each EV battery has
a rate capacity of 30 kWh. EVs arrive to the parking lot at 8
AM and depart at 6 PM.

For simplicity, we assume that all EVs arrive on average
with a 50% state of charge (SOC) and have a desired SOC
of 70% at the time of departure. The SOC at the time of
departure can be as low as 60% and as high as 90%. The
penalties for undercharge and overcharge (from the desired
70%) are same and equal to 5g/kWh. The charging cost paid
by the EV owners is 8g/kWh. The time window for the option
contract is from 3 PM to 6 PM. In the plain call option, the
option quantity is 1000 kWh. For the swing call option: (1)
the maximum total option quantity is 1000 kWh and (2) the
upper limit of energy bought at any given time interval within
the window is 250 kWh. The models are implemented using
Julia-0.6.2 and GUROBI 7.5.2. The results are summarized in
Figures 1 to 4.

Figure 1 shows the optimal option values (V ) as a function
of the strike price (K) for plain option and for various levels of
DRA market power (α). The optimal option values are obtained
using (43), for which the expectations are calculated over thirty
different daily price realizations drawn from the multinormal
distribution described earlier. This same set of price realizations
are used for all optimal option values in the figure. It is
observed that the option value decreases monotonically (up to
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Fig. 2: Option value for different combinations of the strike
price and option quantity for plain option

a certain point) with increase in the strike price. Interestingly,
the option value drops below zero, which indicates that, beyond
a certain strike price (e.g., approximately $36/MWh and α=0.8
for plain call option), the Nash bargaining solution reverses
the option value payment (i.e., EVA pays to DRA) in order to
make the contract feasible. For lower values DRA’s relative
market power, the option values become negative at higher
strike prices. Beyond a certain strike price ($70/MWh for
plain call option) irrespective of the value of α, an increasing
number of the price realizations fall below the strike price,
not triggering the option purchase. This makes the difference
between the expected utilities with and without option, see
(43), smaller. This gradually pushes the value of V closer
to zero as strike price continues to increase. After a certain
high value of K, when all price realizations in the set are
below the strike price within the time window, the option value
remains at zero as there are no more gains to be made from
the option contract. It is observed that the turning point for
V is independent of market power, as it depends only on the
strike price and the set of price realizations. A similar trend
is observed for the swing call option, where the turning point
for V is approximately at K = $55/MWh. This is expected,
as the revenue that EVA earns from DRA is higher in plain
call option than the swing option.

Figure 2 shows the option value for different combinations
of K and Q. From the figure on the left, we observe the
following: the option value increases with option quantity,
albeit at a slower pace as the strike price increases; beyond
a certain higher strike price K =$70/MWh, the option value
decreases with increasing quantity; with further increase in
strike price (say, K =$75/MWh), option value remains at zero.
The figure in the right depicts Nash-bargaining combinations
of option value and strike price for various option quantities.
It can be observed that for a given strike price, the option
value increases with the option quantity. Similarly, for a given
option value, the strike price increases with quantity.

In Figure 3, the expected NBS costs of the DRA and EVA
are presented for different values of K and α for plain option.
The horizontal portion of the curves (i.e., for all K values
up to $55/MWh) represents option contracts, in which the
price scenarios always exceed the strike price and the Nash
bargaining solution yields lowest cost for both DRA and EVA.
As the strike price increases beyond $55/MWh, in some of the
price scenarios the strike price is never exceeded within the
time window and hence the expected cost begins to increase.
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Option quantity [$/MWh]
0 200 400 600 800 1000D

R
A

 c
os

t r
ed

uc
tio

n 
(E

[u
0D

R
A
]-

E
[u

D
R

A
])

 [$
]

0

5

10

15

20

25

30

Plain call option
Swing call option

Strike price [$/MWh]
0 20 40 60 80 100 120

G
N

B
S

 (
35

)

0

5

10

15

20

25

30

35

Option value (v) = $0
Option value (v) = $0.3
Option value (v) = $4
Option value (v) = $30
Option value (v) = $40

Fig. 4: Left: DRA and EVA cost reduction comparison. Right:
GNBS for different option prices for plain call option

The NBS costs reach their highest values ($3145.813 for DRA
and $4.5760 for EVA) and remains constant for K values
$105/MWh and higher. Note that these maximum cost values
correspond to the disagreement point. It is clear that for the
chosen problem scenario, the EVA and DRA should select
any strike price that is below the threshold of $55/MWh for
maximizing their Nash bargaining benefits. We also note that
the total expected profit is $52.651, which is the difference
between the disagreement cost and the Nash bargaining cost
for K below $55/MWh. The profit is shared such that the
DRA gets α× 100% and the rest goes to EVA. Thresholds for
K and the profit distribution can be obtained using our model
for any other numerical variants of our problem. A similar
behavior is observed for the case of swing option.

Figure 4 (left) shows the total expected NBS profit of DRA,
for K ≤ 55 and α=0.5. For increasing values of the option
quantity (Q), the profit grows linearly. This pattern should
hold as long as DRA has the capacity to fully consume the
option quantity. If Q grows too large beyond DRA’s capacity,
then the plain option profit will drop to zero. However, the
swing option profits may continue to grow further, depending
on the nature of the contract before eventually dropping to
zero. Figure 4 (right) shows the plots of the objective function
of the generalized Nash bargaining (GNBS) model (for the
plain option) for various combinations of the option value and
strike price. It shows that the optimal Nash bargaining solution
is the same for all different values V . Similar relationships
are also observed for the swing call option.

V. CONCLUSIONS

Expected increase in the practice of dynamic pricing in
power networks, as well as the availability of advanced
metering infrastructure will expand the use of demand response

by the load aggregators (DRA). A new contributor to the
demand response is expected to be the EV aggregators (EVA)
who will manage a growing number of smart and connected
parking lots in the cities that will host large numbers of EVs
for a considerable part of the day. Charging of these EVs
will consume a significant amount of energy, which will be
scheduled optimally by the EVA based on dynamic hourly
prices and customer preferences. EVA will also store excess
power in the EVs for temporal arbitrage. In this paper, we
first develop demand response models for the DRA and the
EVA assuming that a dynamic pricing policy is in effect.
Thereafter, we show how the demand response capabilities
can be enhanced through an option contract designed for DRA
to buy power stored by EVA. A Nash bargaining solution
approach is used in designing the parameters of the option
contract. Data from an existing load node (DAY) in the PJM
network is used to develop a sample numerical problem
scenario. Using this numerical problem, we examine the
properties of two different kinds of option contracts (plain and
swing) and assess their benefits to the participating aggregators.
It is demonstrated via numerical results that the temporal
arbitrage through an option contract can increase demand
response and reduce cost to the consumers. An expression
for obtaining the optimal option value for a given strike price
and quantity is developed. Numerical results show that for a
given option quantity, option value always adopts to an optimal
(Nash bargaining) level for any given strike price, and vice
versa. Another key feature of our approach is that the solution
of the Nash bargaining model uses only the outcomes of the
DRA and EVA models, and thus the parties do not require
sharing of their technical information (objective function and
constraints). It is assumed that both DRA and EVA are loads
on the same bus of the network. If they are not, congestion
costs and differences in hourly prices must be considered for
the option contract design.
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