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Lump-type solutions, rationally localized in many directions in the space, are analyzed

for nonlinear differential equations derived from generalized bilinear differential equa-
tions. By symbolic computations with Maple, positive quadratic and quartic polynomial

solutions to two classes of generalized bilinear differential equations on f are computed,
and thus, lump-type solutions are presented to the corresponding nonlinear differen-

tial equations on u, generated from taking a transformation of dependent variables

u = 2(ln f)x.
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1. Introduction

The Hirota direct method1 is one of the most powerful approaches for constructing

multi-soliton solutions to integrable nonlinear equations. Its successful idea is to use

a transformation of dependent variables to convert nonlinear differential equations

into bilinear forms defined in terms of bilinear derivatives called the Hirota bilinear

derivatives. Such bilinear forms have been generalized by adopting new rules of

taking signs.2 New broader classes of new nonlinear differential equations derived

from generalized bilinear equations have been presented, and their resonant soliton

solutions have been constructed by adopting the linear superposition principle.2,3
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In recent years, there has been growing interest in rationally localized solutions

in the space,4–7 particularly lump solutions, localized in all directions in the space

(see, e.g., Refs. 8–12 for typical examples). The KPI equation,

(ut + 6uux + uxxx)x − uyy = 0 (1)

has the following lump solution13:

u = 4
−[x+ ay + (a2 − b2)t]2 + b2(y + 2at)2 + 3/b2

{[x+ ay + (a2 − b2)t]2 + b2(y + 2at)2 + 3/b2}2 , (2)

where a and b 6= 0 are two free real constants. More generally, the KPI equation

(1) admits the following lump solution14:

u = 2(ln f)xx =
4(a1

2 + a5
2)f − 8(a1g + a5h)2

f2
, f = g2 + h2 +

3(a1
2 + a5

2)3

(a1a6 − a2a5)
,

(3)

where

g = a1x+ a2y +
a1a2

2 − a1a62 + 2a2a5a6
a12 + a52

t+ a4 ,

h = a5x+ a6y +
2a1a2a6 − a22a5 + a5a6

2

a12 + a52
t+ a8 ,

the six parameters a1, a2, a4, a5, a6 and a8 being free real constants satisfying a1a6−
a2a5 6= 0. Rogue wave solutions, which draw big attention from research scientists

worldwide, are a particularly interesting class of lump-type solutions,15,16 and such

solutions could be used to describe significant nonlinear wave phenomena in both

oceanography17 and nonlinear optics.18 There are various discussions on general

rational function solutions to integrable equations such as the KdV, KP, Boussinesq

and Toda equations.19–23 It has become a very interesting topic to search for lump

solutions or lump-type solutions, rationally localized solutions in many directions

in the space, to nonlinear differential equations, based on Hirota bilinear forms and

generalized bilinear forms.

Lump solutions to nonlinear differential equations possessing Hirota bilinear

forms are analyzed in a recent paper.24 The basis of success is a set of Hirota bi-

linear forms and the primary object is a class of multi-variate positive quadratic

functions. Necessary and sufficient conditions for the existence of positive quadratic

function solutions are presented for general Hirota bilinear equations. Such poly-

nomial solutions yield lump solutions to nonlinear differential equations derived

from Hirota bilinear equations under a transformation of either u = 2(ln f)x or

u = 2(ln f)xx.

In this paper, we would like to consider generalized Hirota bilinear equations,

and focus on the two classes of generalized bilinear differential equations involv-

ing the prime number p = 3 presented in Ref. 2. We will search for their positive

quadratic and quartic function solutions by symbolic computation with Maple.
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Further, we will present lump-type solutions to the corresponding nonlinear differ-

ential equations generated by u = 2(ln f)x. It is hoped that the study will help us

recognize characteristics of nonlinearity more concretely. A few concluding remarks

will be given at the end of the paper.

2. Generalized Bilinear Equations

2.1. Hirota bilinear derivatives and bilinear equations

Let M be a natural number and x = (x1, x2, . . . , xM )T be a column vector of RM .

For f , g ∈ C∞(RM ), the Hirota bilinear derivatives are defined as follows:

Dn1
1 Dn2

2 · · ·DnM

M f · g :=

M∏

i=1

(∂xi
− ∂x′

i
)nif(x)g(x′)|x′=x , (4)

where x′ = (x′1, x
′
2, . . . , x

′
M )T and n1, . . . , nM are arbitrary nonnegative integers.

For example, we can compute

Dif · g = fxi
g − fgxi

,

DiDjf · g = fxi,xjg + fgxi,xj − fxigxj − fxjgxi .

Assume that D = (D1, D2, . . . , DM ), where each Di is the first-order Hirota bilinear

derivative with respect to xi.

One important property of the Hirota bilinear derivatives is that

Di1Di2 · · ·Dikf · g = (−1)kDi1Di2 · · ·Dikg · f ,
where 1 ≤ i1, i2, . . . , ik ≤ M need not be distinct. It then follows that if k is odd,

we have

Di1Di2 · · ·Dikf · f = 0 .

We are interested in the following general Hirota bilinear equation:

P (D)f · f = P (D1, D2, . . . , DM )f · f = 0 , (5)

where P is a polynomial in M variables. This equation is bilinear indeed. Since the

terms of odd powers are all zeros, we can assume that P is an even polynomial, i.e.,

P (−x) = P (x), while discussing Hirota bilinear equations.

For convenience’s sake, we adopt the notation,

fi1i2···ik =
∂kf

∂xi1∂xi2 · · · ∂xik
, 1 ≤ i1, i2, . . . , ik ≤M . (6)

Therefore,

DiDjf · f = 2(fijf − fifj) , 1 ≤ i, j ≤M , (7)

and

DiDjDkDlf · f = 2[fijklf − fijkfl − fijlfk − fiklfj − fjklfi + fijfkl

+ fikfjl + filfjk], 1 ≤ i, j, k, l ≤M . (8)
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Motivated by Bell polynomial theories on soliton equations,25–27 we take one of the

transformations:

u = 2(ln f)x1
, u = 2(ln f)x1x1

(9)

to formulate nonlinear differential equations from Hirota bilinear equations. All

integrable nonlinear equations are such examples.1,28 For example, for the KdV

equation,

ut + 6uux + uxxx = 0 ,

and the KPI and KPII equations,

(ut + 6uux + uxxx)x + σuyy = 0 , σ = ∓1 ,

the transformation u = 2(ln f)xx provides a link to the (1+1)-dimensional Hirota

bilinear form,

(DxDt +D4
x)f · f = 0 , (10)

and the (2+1)-dimensional Hirota bilinear form,

(DxDt +D4
x + σD2

y)f · f = 0 , (11)

respectively.

If a polynomial solution f to a bilinear equation is positive, then the solution u

defined by any of the transformations in (9) is analytical and most likely, rationally

localized in all directions in the space, and thus, it often presents a lump solution

to the corresponding nonlinear differential equation.

2.2. Generalized bilinear derivatives

Let p ∈ N be given. For f, g ∈ C∞(RM ), the so-called generalized bilinear deriva-

tives are defined as follows2:

(Dn1
p,1D

n2
p,2 · · ·DnM

p,Mf · g)(x) :=

M∏

i=1

(∂xi
+ α∂x′

i
)nif(x)g(x′)|x′=x

=

M∏

i=1

ni∑

ji=0

αj
l

(
ni
ji

)
∂ni−ji
xi

f(x)∂jixi
g(x) , (12)

where x′ = (x′1, x
′
2, . . . , x

′
M )T , n1, . . . , nM are arbitrary nonnegative integers, and

for any integer m, the mth power of α is defined by

αm = (−1)r(m)

with r(m) being the remainder of m divided by p: m = r(m) mod p with 0 ≤
r(m) < p, and thus, m− r(m) = kp for some integer k. It is easy to see that

Dn
p,i = Dn

i , 1 ≤ n ≤ p− 1 ,

where 1 ≤ i ≤M and p ≥ 2.
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When p = 2k (k ∈ N), the generalized bilinear derivatives reduce to the Hirota

bilinear derivatives, since m− r(m) is even and we have αm = (−1)r(m) = (−1)m.

Therefore, D2k,i = Di for 1 ≤ i ≤M .

Now, we consider p = 3, and then, we have

α = −1, α2 = α3 = 1, α4 = −1, α5 = α6 = 1, . . . .

It is direct to get

D3,if ·g=Dif ·g=fig−fgi,
D3,iD3,jf ·g = DiDjf ·g=fijg−fjgi−figj+fgij ,

D3,iD3,jD3,kf ·g=fijkg−fijgk−fikgj+figjk−fjkgi+fjgik+fkgij+fgijk,

D3,iD3,jD3,kD3,lf ·g=fijklg−fijkgl−fijlgk+fijgkl−fiklgj+fikgjl

+ filgjk+figjkl−fjklgi+fjkgil+fjlgik+fjgikl

+ fklgij+fkgijl+flgijk−fgijkl.

Therefore, when g = f , we obtain




D3,if · f = fif − ffi = 0 ,

D3,iD3,jf · f = 2(fijf − fifj) ,
D3,iD3,jD3,kf · f = 2fijkf ,

D3,iD3,jD3,kD3,lf · f = 2(fijfkl + fikfjl + filfjk) .

(13)

In particular,

D2
3,if · f = 2(fiif − f2i ), D3

3,if · f = 2fiiif, D4
3,if · f = 6f2ii . (14)

2.3. Generalized bilinear equations and polynomial solutions

Let P (x) be a polynomial in x ∈ RM with degree dP and P (0) = 0 (P may not be

even). Suppose that p ≥ 2 is an integer. Formulate a generalized bilinear equation

as follows:

P (D〈p〉)f · f = 0 , (15)

where D〈p〉 = (Dp,1, Dp,2, . . . , Dp,M ).

We consider polynomial solutions f(x) with the independent variable x ∈ RM .

For a monomial Pk(x) = xn1
1 · · ·xnM

M , noting that (i) deg(f) = 0 if and only if

f = const. 6= 0 and (ii) deg(0) = −∞, we have

deg(Pk(D〈p〉)f · f) ≤ 2 deg(f)− deg(Pk) ,

since

Pk(D〈p〉)f · f =
∑

J

αJ
∂j1

∂xj11
· · · ∂

jM

∂xjMM
f(x)

∂n1−j1

∂xn1−j1
1

· · · ∂
nM−jM

∂xnM−jM
M

f(x)
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for some real constants αJ with J = (j1, . . . , jM ). As a corollary, for a linear or

quadratic function f (i.e., deg(f) ≤ 2), we have

Pk(D〈p〉)f · f = 0 , (16)

when deg(Pk) ≥ 5.

In general, if f is a polynomial solution to the generalized bilinear equation

(15), then the coefficients of f satisfy a group of nonlinear algebraic equations. For

example, if f(x, t) = ax2 + 2bxt+ ct2 + dx+ et+ g is a solution of the bilinear KdV

equation (10), then we have

ab = ac = ae = bc = cd = 12a2 + 2bg − de = 0 , (17)

which leads to the following three classes of solutions:

(i) f(x, t) = 2bxt+ dx+ et+ de/(2b),

(ii) f(x, t) = ct2 + et+ g,

(iii) f(x, t) = dx+ g.

For the bilinear KdV equation with P = P (t, x) = xt+ x4, we have

P (D)f · f = 2(fxtf − fxft + fxxxxf − 4fxxxfx + 3f2xx) = 0 ,

when p = 2, and

P (D〈3〉)f · f = 2(fxtf − fxft + 3f2xx) = 0 ,

when p = 3. Therefore, the corresponding bilinear differential equations depend on

the value of p. However, if f is quadratic, then we can easily find that

Dn
p,if · f = Dn

i f · f, n ≥ 1 , (18)

where 1 ≤ i ≤ M and p ≥ 2, and thus, the same quadratic function f can solve

all generalized bilinear differential equations with different values of p ≥ 2. We list

this result as follows.

Theorem 1. The generalized bilinear equations (15) with a given same polynomial

P but different integers p ≥ 2 possess the same set of quadratic function solutions.

Let us denote a general quadratic function by

f(x) = xTAx− 2bTx+ c , (19)

where A = AT ∈ RM×M , b ∈ RM , and c ∈ R, and write the polynomial P (x)

defining the generalized bilinear equation (15) as follows:

P (x) =

N∑

k=1

M∑

i1,...,ik=1

pi1···ikxi1 · · ·xik , (20)

where N = deg(P ) ≥ 1 is an integer, and pi1···ik , 1 ≤ i1, . . . , ik ≤ M, 1 ≤ k ≤ N ,

are real constants.
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It has been proved24 that a quadratic function f defined by (19) is positive

everywhere in RM , i.e., f(x) > 0, ∀x ∈ RM , if and only if A is positive semi-

definite, b ∈ range(A) and c − bTA+b > 0, where A+ being the Moore–Penrose

pseudoinverse of A.

Noting the properties in (16) and (18), we can see that only the coefficients pij
and pijkl take effect in computing quadratic function solutions. Necessary and suf-

ficient conditions on quadratic function solutions to Hirota bilinear equations have

been presented in the previous paper24 indeed. Based on Theorem 1, we can have

the same criterion on quadratic function solutions to generalized bilinear equations

stated below.

Theorem 2. Let A = (aij)M×M ∈ RM×M be symmetric and positive semi-

definite, b ∈ RM and c ∈ R. The quadratic function f defined by (19) solves the

generalized bilinear equation (15) with P (x) defined by (20) if and only if

2

M∑

i,j,k,l=1

pijkl(aijakl + aikajl + ailajk) + d

M∑

i,j=1

pijaij = 0 (21)

and

M∑

i,j=1

pij(aijA−AiA
T
j −AjA

T
i ) = 0 , (22)

where Ai denotes the ith column vector of the symmetric matrix A for 1 ≤ i ≤M ,

and d = c− bTA+b.

We point out that for distinct p, the generalized bilinear equations by (15)

may have different polynomial solutions of higher order than two. For example,

any C3-differentiable function is a solution to the equation D3
xf · f = 0. But if

f = f(x, t) = x4 + t2, based on (14), we can have

D3
3,xf · f = 48x(x4 + t2) 6= 0 ,

which means that this quartic function f does not solve D3
3,xf · f = 0.

3. Lump-Type Solutions to Two Classes of Nonlinear Differential

Equations

In general, it is difficult to find rational function solutions to nonlinear differential

equations. But using Mathematical software such as Maple, we can find polynomial

solutions to generalized bilinear differential equations.

In this section, we will try to search for positive quadratic or quartic polynomial

solutions to generalized bilinear equations. From those polynomial solutions f , we

will be able to construct lump-type solutions to nonlinear differential equations, via

the transformation of dependent variables u = (2 ln f)x.

1640018-7
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3.1. First class of nonlinear equations

Let us begin with the following polynomial [see formula (18) in Ref. 2]:

P = c1x
5 + c2x

3y + c3x
2z + c4xt+ c5yz ,

where the coefficients ci, 1 ≤ i ≤ 5, are free real constants. The associated general-

ized bilinear differential equation with p = 3 reads [see (19) in Ref. 2]:

P (D3,x, D3,y, D3,z, D3,t)f · f = 2c1(fxxxxxf − 5fxxxxfx + 10fxxxfxx) + 6c2fxxfxy

+ 2c3fxxzf + 2c4(fxtf − fxft)
+ 2c5(fyzf − fyfz) = 0 . (23)

Taking u = 2(ln f)x generates the corresponding nonlinear differential equation:

∂

∂x

P (D3,x, D3,y, D3,z, D3,t)f · f
f2

= c1

(
15

2
u3x +

5

2
u3uxx +

15

8
u4ux + 10uxuxxx +

15

2
u2u2x

+ 15uuxuxx + 10u2xx + uxxxxx
)

+ c2

[
3

8
u3uy +

3

2
uxuxy +

3

4
u2uxy +

3

2
uxxuy

+
9

4
uuxuy +

3

8
(3u2ux + 2uuxx + 2u2x)v

]

+ c3

[
uuxz + uxxz +

3

2
uxuz +

1

4
u2uz +

1

2
(uxx + uux)w

]
+ c4uxt + c5uyz = 0,

(24)

where uy = vx and uz = wx. Therefore, if f solves the generalized bilinear equation

(23), then u = 2(ln f)x solves the nonlinear differential equation (24).

3.1.1. Quadratic function solutions

Let us first consider quadratic function solutions to the generalized bilinear equation

(23), which involve a sum of two squares. Based on the discussion in Sec. 2, we know

that such solutions have nothing to do with c1 and c3. Therefore, the coefficients c1
and c3 will be arbitrary real constants. Three cases of such solutions by symbolic

computation with Maple are displayed as follows.

(1) When c4 6= 0, but c2 and c5 are arbitrary, we have

f =

(
a4a7a8c5
a22c4

t+ a2x−
a7a8
a2

y + a4z + a5

)2

+

(
−a4a8c5

a2c4
t+ a7x+ a8y +

a4a7
a2

z + a10

)2

+ a11 ,

1640018-8
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where a2, a4, a5, a7, a8, a10 and a11 are arbitrary real constants satisfying a2 6= 0

and a11 > 0.

(2) When c2c4 6= 0, but c5 is arbitrary, we have

f =

[
a3(a4

2a11c5 − 3a7
3a9c2)c5

3a74c2c4
t+ a3y + a4z + a5

]2

+

[
a3a4

(
3a7

3c2 + a9a11c5
)
c5

3a74c2c4
t+ a7x−

a3a4a11c5
3a73c2

y + a9z + a10

]2
+ a11 ,

where a3, a4, a5, a7, a9, a10 and a11 are arbitrary real constants satisfying a7 6= 0

and a11 > 0.

(3) When c4c5 6= 0, but c2 is arbitrary, we have

f = [−(a2a3a4 − a2a8a9 + a3a7a9 + a4a7a8)d1t+ a2x+ a3y + a4z + a5]2

+ [−(a2a3a9 + a2a4a8 − a3a4a7 + a7a8a9)d1t+ a7x+ a8y + a9z + a10]2 + d2

with

d1 =
c5

(a22 + a72)c4
, d2 = − 3(a2

2 + a7
2)2(a2a3 + a7a8)c2

(a2a9 − a4a7)(a2a8 − a3a7)c5
,

where ai, i = 2, . . . , 5, 7, . . . , 10 are arbitrary real constants satisfying a2a9−a4a7 6=
0 and a2a8 − a3a7 6= 0.

3.1.2. Quartic function solutions

Let us now consider quartic function solutions to the generalized bilinear equation

(23). A direct symbolic computation with Maple tells us seven classes of positive

quartic function solutions.

(1) Solutions independent of y:

f = (a2x+ a4z + a5)2 + (a7x+ a9z + a10)2 + (a14z + a15)4 + a16 ,

where a2, a4, a5, a7, a9, a10, a14, a15 and a16 > 0 are arbitrary real constants.

(2) Solutions independent of z:

f =

(
−a7a8

a3
x+ a3y + a5

)2

+ (a7x+ a8y + a10)2 + (a13y + a15)4 + a16 ,

where a3, a5, a7, a8, a10, a13, a15 and a16 > 0 are arbitrary real constants.

(3) Solutions independent of x and y:

f = (a1t+ a4z + a5)2 + (a6t+ a9z + a10)2 + (a11t+ a14z + a15)4 + a16 ,

where a1, a4, a5, a6, a9, a10, a11, a14, a15 and a16 > 0 are arbitrary real constants.

(4) Solutions independent of x and z:

f = (a1t+ a3y + a5)2 + (a6t+ a8y + a10)2 + (a11t+ a13y + a15)4 + a16 ,

where a1, a3, a5, a6, a8, a10, a11, a13, a15 and a16 > 0 are arbitrary real constants.
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(5) When c5 6= 0, but ck, 1 ≤ k ≤ 4, are arbitrary, we have

f =

(
−a7a8a11

a2a13
t+ a2x−

a7a8
a2

y − a2a11c4
a13c5

z + a5

)2

+

(
a8a11t

a13
+ a7x+ a8y −

a7a11c4
a13c5

z + a10

)2

+ (a11t+ a13y + a15)4 + a16 ,

where a2a13 6= 0, a16 > 0 and all other involved parameters are arbitrary real

constants.

(6) When c4 6= 0, but ck, 1 ≤ k ≤ 3, we have

f =

(
−a4a13c5

a11c4
x+ a4z + a5

)2

+ (a11t+ a13y + a15)4 + a16 ,

where a11 6= 0, a16 > 0 and all other involved parameters are arbitrary real

constants.

(7) When c4 6= 0, but ck, 1 ≤ k ≤ 3, we have

f =

(
−a3a9c5

a7c4
t+ a3y + a5

)2

+ (a7x+ a9z + a10)2

+

(
−a9a13c5

a7c4
t+ a13y + a15

)4

+ a16 ,

where a7 6= 0, a16 > 0 and all other involved parameters are arbitrary real constants.

3.1.3. Discussions

Lump solutions are rationally localized in all directions in the space. For the exact

solutions we discussed above, this characteristic property equivalently requires

lim
x2+y2+z2→∞

u(x, y, z, t) = 0 , ∀t ∈ R ,

where u = 2(ln f)x, and obviously, a sufficient condition for u to be a

lump solution is

lim
x2+y2+z2→∞

f(x, y, z, t) =∞, ∀t ∈ R .

We point out that all the solutions presented above do not satisfy this criterion,

but they are rationally localized in many directions in the space and thus, we call

them lump-type solutions.

We consider a special case of the parameters and coefficients for the class of

solutions in Sec. 3.1.2 (5). Choose a2 = a11 = a13 = a16 = 1, a5 = a10 = a15 = 0,

a7 = −1, a8 = 2 and c4 = c5 = 2. Then, we have the following positive quartic

function solution to the generalized bilinear Eq. (23):

f = (2t+ x+ 2y − z)2 + (2t− x+ 2y + z)2 + (t+ y)4 + 1 ,

1640018-10
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(a) (b) (c)

Fig. 1. Plots of (25) at t = 0 with (a) x = 0, (b) y = −1 and (c) z = 1.

where the coefficients ci, 1 ≤ i ≤ 4, are free real constants. The associated gener-

alized bilinear differential equation with p = 3 (see (34) in Ref.2) reads:

P (D3,x, D3,y, D3,t)f · f
= 2c1(fxxf − f2x) + 6c2fxxfxy + 2c3(fxxxxyyf

+4fxxxfxyy + 6f2xxy) + 2c4(fytf − fyft) = 0. (26)

Taking u = (2 ln f)x generates the corresponding nonlinear differential equation

∂

∂x

P (D3,x, D3,y, D3,t)f · f
f2

= c1uxx + c2
[3
8
u3uy +

3

2
uxuxy +

3

4
u2uxy +

3

2
uxxuy +

3

8
(3u2ux + 2uuxx + 2u2x)w

]

+c3
[ 5

16
u4uyy + 12uu2xy + 5uyuxxxy +

27

4
u2xuyy + 16uxyuxxy + 5uxuxxyy +

5

2
u3u2y

+2uuxxxyy + u3uxyy + 7uxxuxyy +
3

2
u2uxxyy +

9

2
uxxxuyy + 7uxxu

2
y + 14uuxxyuy

+9uuxuxyy +
21

4
u2uxuyy + 24uxuyuxy + 12u2uxyuy + 8uuxxuyy + 18uuxu

2
y

+uxxxxyy +
(
uxxxxy + 8uxuxxy + 2uuxxxy + 3u2uxxy +

5

2
u3uxy + 15uuxuxy

+
9

2
uxxxuy + 10uxxuxy + 2uuxxx +

11

16
u4uy + 11uuyuxx +

45

4
u2uxuy +

45

4
u2xuy

)
w

+
(1

2
uxxxx +

9

4
u2uxx + 2uuxxx +

7

2
uxuxx +

5

4
u3ux +

9

2
uu2x

)
wy +

(1

4
uxxxx

+
15

8
u2uxx +

13

4
uxuxx + uuxxx +

11

8
u3ux +

15

4
uu2x

)
w2
]

+ c4uyt = 0, (27)

where uy = wx.

In what follows, we will try to search for positive quadratic and quartic solutions

to the generalized bilinear equation (26) by symbolic computations with Maple.

The resulting polynomial solutions will yield lump-type and lump solutions to the

nonlinear differential equation (27).

Fig. 1. Plots of (25) at t = 0 with (a) x = 0, (b) y = −1 and (c) z = 1.

and the corresponding lump-type solution to the nonlinear differential equation

(24):

u = 2(ln f)x =
8(x− z)

(2t+ x+ 2y − z)2 + (2t− x+ 2y + z)2 + (t+ y)4 + 1
. (25)

Figure 1 shows three 3d plots of this lump-type solution at t = 0 with x = 0, y = −1

and z = 1, respectively.

3.2. Second class of nonlinear equations

Let us now begin with the polynomial [see (29) of Ref. 2]:

P = c1x
2 + c2x

3y + c3x
4y2 + c4yt ,

where the coefficients ci, 1 ≤ i ≤ 4, are free real constants. The associated general-

ized bilinear differential equation with p = 3 [see (34) in Ref. 2] reads:

P (D3,x, D3,y, D3,t)f · f = 2c1(fxxf − f2x) + 6c2fxxfxy + 2c3(fxxxxyyf

+ 4fxxxfxyy + 6f2xxy) + 2c4(fytf − fyft) = 0 . (26)

Taking u = (2 ln f)x generates the corresponding nonlinear differential equation

∂

∂x

P (D3,x, D3,y, D3,t)f · f
f2

= c1uxx+c2

[
3

8
u3uy+

3

2
uxuxy+

3

4
u2uxy+

3

2
uxxuy+

3

8
(3u2ux+2uuxx+2u2x)w

]

+c3

[
5

16
u4uyy+12uu2xy+5uyuxxxy+

27

4
u2xuyy+16uxyuxxy+5uxuxxyy+

5

2
u3u2y

+2uuxxxyy+u3uxyy+7uxxuxyy+
3

2
u2uxxyy+

9

2
uxxxuyy+7uxxu

2
y+14uuxxyuy

+9uuxuxyy+
21

4
u2uxuyy+24uxuyuxy+12u2uxyuy+8uuxxuyy+18uuxu

2
y

+uxxxxyy+

(
uxxxxy+8uxuxxy+2uuxxxy+3u2uxxy+

5

2
u3uxy+15uuxuxy
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+
9

2
uxxxuy+10uxxuxy+2uuxxx+

11

16
u4uy+11uuyuxx+

45

4
u2uxuy+

45

4
u2xuy

)
w

+

(
1

2
uxxxx+

9

4
u2uxx+2uuxxx+

7

2
uxuxx+

5

4
u3ux+

9

2
uu2x

)
wy

+

(
1

4
uxxxx+

15

8
u2uxx+

13

4
uxuxx+uuxxx+

11

8
u3ux+

15

4
uu2x

)
w2

]
+c4uyt = 0 ,

(27)

where uy = wx.

In what follows, we will try to search for positive quadratic and quartic solutions

to the generalized bilinear equation (26) by symbolic computations with Maple.

The resulting polynomial solutions will yield lump-type and lump solutions to the

nonlinear differential equation (27).

3.2.1. Quadratic function solutions

A direct symbolic computation tells the following four classes of positive quadratic

function solutions to the generalized bilinear equation (26).

(1) When c1c4 6= 0, but c1 and c2 are arbitrary, we have

f =

[
− (a1

2a2 + 2a1a4a5 − a2a42)c1
(a22 + a52)c4

t+ a1x+ a2y + a3

]2

+

[
(a1

2a5 − 2a1a2a4 − a42a5)c1
(a22 + a52)c4

t+ a4x+ a5y + a6

]2

−3(a1a2 + a4a5)(a1
2 + a4

2)(a2
2 + a5

2)c2
(a1a5 − a2a4)2c1

,

where ai, 1 ≤ i ≤ 6, are arbitrary real constants satisfying a1a5 − a2a4 6= 0 and

(a1a2 + a4a5)c1c2 < 0.

(2) When c1c4 6= 0, but c1 and c2 are arbitrary, we have

f =

[
(a4

2a6
2 − a12a32)c1

a2(a32 + a62)c4
t+ a1x+ a2y + a3

]2
+

[
(a4a6 − a1a3)(a3a4 − a1a6)c1

a2(a32 + a62)c4
t

+ a4x+
a2(a3a4 + a1a6)

a1a3 − a4a6
y + a6

]2
− 3a2a3(a3

2 + a6
2)(a1

2 + a4
2)c2

a26(a1a3 − a4a6)c1
,

where ai, 1 ≤ i ≤ 4 and a6 are arbitrary real constants satisfying a2 6= 0, a6 6= 0,

a1a3 − a4a6 6= 0 and a2a3(a1a3 − a4a6)c1c2 < 0.

(3) When c1c4 6= 0, but c2 and c3 are arbitrary, we have

f = [a7t+ a1x+ a2y + a3]2 + [a8t+ a4x+ a5y + a6]2 + a9

with

a7 =
(a2a4

2 − 2a1a4a5 − a12a2)c1
(a22 + a52)c4

,

1640018-12
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a8 =
(a1

2a5 − 2a1a2a4 − a42a5)c1
(a22 + a52)c4

,

a9 = −3(a1a2 + a4a5)(a1
2 + a4

2)(a3
2 + a6

2)c2
(a1a5 − a2a4)2c1

,

where ai, 1 ≤ i ≤ 6, are arbitrary real constants satisfying a1a5 − a2a4 6= 0 and

a9 > 0.

(4) When c1c4 6= 0, but c2 and c3 are arbitrary, we have

f = (a7t+ a1x+ a2y + a3)2 + (a8t+ a4x+ a5y + a6)2 + a9

with

a5 =
a2(a1a6 + a3a4)

a1a3 − a4a6
,

a7 = − (a1
2a3

2 − a42a62)c1
a2(a32 + a62)c4

,

a8 =
(a1a3 − a4a6)(a1a6 − a3a4)

a2(a32 + a62)c4
,

a9 = −3(a1
2 + a4

2)(a3
2 + a6

2)a2a3c2
(a1a3 − a4a6)a62c1

,

where ai, 1 ≤ i ≤ 4 and a6 are arbitrary real constants satisfying a2 6= 0, a1a3 −
a4a6 6= 0, and a9 > 0.

3.2.2. Quartic function solutions

A direct symbolic computation with f involving a sum of three squares leads to

the following three classess of positive quartic function solutions to the generalized

bilinear equation (26).

(1) Case I involving a sum of three squares:

f = (a1y + a2)2 + (a3y + a4)2 +

[
a5ty +

(a1a2 + a3a4)a5
a12 + a32

t

]2
− (a1a4 − a2a3)2

a12 + a32
,

where ai, 1 ≤ i ≤ 5, are arbitrary real constants satisfying a1
2 + a3

2 6= 0.

(2) Case II involving a sum of three squares:

f =

(
a1 −

a2a3
a1

t

)2

+ (a2t+ a3)2 + (a4t+ a5ty)2 − a12 − a32 ,

where a1 6= 0 and ai, 2 ≤ i ≤ 5, are arbitrary real constants.

(3) Case III involving a sum of three squares:

f=

(
a1−

a2a3
a1

t+
a1a5
a4

y

)2

+

(
a2t+

a3a5
a4

y+a3

)2

+(a4t+a5ty)2+
a2

2(a1
2+a3

2)2

a12a42
,

where ai, 1 ≤ i ≤ 5, are arbitrary real constants satisfying a1a4 6= 0.
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(a) (b) (c)

Fig. 2. Plots of (28) at (a) t = 0, (b) t = 15 and (c) t = 30.

and the lump solution to (27):

u(x, y, t) =
4
[
− 2 a1c1

c4
t+ (a1

2 + 1)x+ a1y + a1a3 + a6
]

(a1x+ y + a3)2 + (−2a1c1
c4

t+ x+ a6)2 + 6| c2c1 |
.

Particularly, taking a1 = −1 , a3 = 0, a6 = −1 and c1 = 1, c2 = 1
3 , c4 = 2 leads to

the following lump solution:

u(x, y, t) =
4(2x− y + t− 1)

(−x+ y)2 + (t+ x− 1)2 + 2
. (28)

The figure 2 shows three 3d plots of this solution at t = 1, 15, 30, respectively. The

plots depict that the lump by (28) does not change much while it travels.

4. Concluding remarks

We have analyzed quadratic function solutions to generalized bilinear equations,

and carried out a search for positive quadratic and quartic function solutions to two

classes of generalized bilinear equations, generated from the two specific polynomi-

als. The resulting polynomial solutions yield lump-type solutions of finite energy

to the corresponding nonlinear differential equations, derived from the considered

generalized bilinear equations. It is expected that such a study will help us recog-

nize the characteristics of generalized bilinear equations and nonlinear differential

equations.

High-order polynomial solutions to generalized bilinear equations is an inter-

esting problem. It will be important to see if there is any nonlinear superposition

formula for generating lump solutions in terms of higher-order polynomials. Is there

any combinatorial relation between higher-order polynomial solutions and general-

ized bilinear equations? The second interesting problem is how to construct lump

solutions to discrete integrable equations. Rational function solutions to the Toda

and 2-dimensional Toda lattice equations are successfully presented and expressed

in term of Casoratian determinant23,29. The third problem is to see if it is possible

to classify lump solutions from a determinant point of view. Can lump solutions be

written in Wronskian, Casoratian or Pfaffian form?

Fig. 2. Plots of (28) at (a) t = 0, (b) t = 15 and (c) t = 30.

3.2.3. Discussions

We can generate lump solutions from the presented quadratic function solutions

to the generalized bilinear equation (26) in Sec. 3.2.1. But the quartic function

solutions in Sec. 3.2.2 are all independent of the spatial variable x. Therefore, when

y is fixed and x goes to ∞, f will not tend to ∞. This implies that the presented

quartic function solutions to the generalized bilinear equation (26) will not produce

any lump solution to the nonlinear differential equation (27).

Let us now present a special class of lump solutions from the first class of

quadratic function solutions in Sec. 3.2.1. To the end, we specify a2 = a4 = 1,

a5 = 0, a1 = −sgn(c1c2). Then, we have the positive quadratic function solution

to (26):

f(x, y, t) = (a1x+ y + a3)2 +

(
−2a1c1

c4
t+ x+ a6

)2

+ 6

∣∣∣∣
c2
c1

∣∣∣∣

and the lump solution to (27):

u(x, y, t) =

4

[
−2a1c1

c4
t+ (a1

2 + 1)x+ a1y + a1a3 + a6

]

(a1x+ y + a3)2 +

(−2a1c1
c4

t+ x+ a6

)2

+ 6

∣∣∣∣
c2
c1

∣∣∣∣
.

Particularly, taking a1 = −1, a3 = 0, a6 = −1 and c1 = 1, c2 = 1/3, c4 = 2 leads

to the following lump solution:

u(x, y, t) =
4(2x− y + t− 1)

(−x+ y)2 + (t+ x− 1)2 + 2
. (28)

Figure 2 shows three 3D plots of this solution at t = 1, 15, 30, respectively. The

plots depict that the lump by (28) does not change much while it travels.
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4. Concluding Remarks

We have analyzed quadratic function solutions to generalized bilinear equations,

and carried out a search for positive quadratic and quartic function solutions to two

classes of generalized bilinear equations, generated from the two specific polynomi-

als. The resulting polynomial solutions yield lump-type solutions of finite energy

to the corresponding nonlinear differential equations, derived from the considered

generalized bilinear equations. It is expected that such a study will help us recog-

nize the characteristics of generalized bilinear equations and nonlinear differential

equations.

High-order polynomial solutions to generalized bilinear equations is an inter-

esting problem. It will be important to see if there is any nonlinear superposition

formula for generating lump solutions in terms of higher-order polynomials. Is there

any combinatorial relation between higher-order polynomial solutions and general-

ized bilinear equations? The second interesting problem is how to construct lump

solutions to discrete integrable equations. Rational function solutions to the Toda

and 2-dimensional Toda lattice equations are successfully presented and expressed

in terms of Casoratian determinant.23,29 The third problem is to see if it is possible

to classify lump solutions from a determinant point of view. Can lump solutions be

written in Wronskian, Casoratian or Pfaffian form?
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